Open Access
Issue
Acta Acust.
Volume 6, 2022
Article Number 33
Number of page(s) 9
Section Structural Acoustics
DOI https://doi.org/10.1051/aacus/2022031
Published online 02 August 2022
  1. K. McManus, T. Poinsot, S.M. Candel: A review of active control of combustion instabilities. Progress in Energy and Combustion Science 19, 1 (1993) 1–29. [CrossRef] [Google Scholar]
  2. J.H. He, X.A. Jin: A short review on analytical methods for the capillary oscillator in a nanoscale deformable tube, in Mathematical Methods in the Applied Sciences, Wiley Online Library. 2020, pp. 1–8. https://doi.org/10.1002/mma.6321. [Google Scholar]
  3. F. Culick, P. Kuentzmann: Unsteady motions in combustion chambers for propulsion systems. NATO Research and Technology Organization, Neuilly-sur-Seine (France), 2006. [Google Scholar]
  4. G.P. Sutton: History of liquid propellant rocket engines. American Institute of Aeronautics and Astronautics, Reston, VA, 2005. [Google Scholar]
  5. N. A. T. O. A. G. F. A. Research, D. Propulsion, E.P. Workshop, K. Schadow: Active combustion control for propulsion systems. North Atlantic Treaty Organization, Advisory Group for Aerospace Research & Development, Neuilly-sur-Seine, France, 1997. [Google Scholar]
  6. P.R. Wieber: Acoustic decay coefficients of simulated rocket combustors. National Aeronautics and Space Administration, Washington, D.C., 1966. [Google Scholar]
  7. E. Laudien, R. Pongratz, R. Pierro, D. Preclik: Experimental procedures aiding the design of acoustic cavities. Liquid Rocket Engine Combustion Instability 169 (1995) 377–399. [Google Scholar]
  8. C.H. Sohn, S.-K. Kim, Y.-M. Kim: Effects of various baffle designs on acoustic characteristics in combustion chamber of liquid rocket engine. KSME International Journal 18, 1 (2004) 145–152. [CrossRef] [Google Scholar]
  9. M. Farshchi, H. Mehrjou, M. Salehi: Acoustic characteristics of a rocket combustion chamber: Radial baffle effects. Applied Acoustics 70, 8 (2009) 1051–1060. [CrossRef] [Google Scholar]
  10. D. You, D.D. Ku, V. Yang: Acoustic waves in baffled combustion chamber with radial and circumferential blades. Journal of Propulsion and Power 29, 6 (2013) 1453–1467. [CrossRef] [Google Scholar]
  11. D. Zhao, X. Li: A review of acoustic dampers applied to combustion chambers in aerospace industry. Progress in Aerospace Sciences 74 (2015) 114–130. [CrossRef] [Google Scholar]
  12. S.-K. Kim, H.S. Choi, H.J. Kim, Y.S. Ko, C.H. Sohn: Finite element analysis for acoustic characteristics of combustion stabilization devices. Aerospace Science and Technology 42 (2015) 229–240. [CrossRef] [Google Scholar]
  13. T. Poinsot: Prediction and control of combustion instabilities in real engines. Proceedings of the Combustion Institute 36, 1 (2017) 1–28. [CrossRef] [Google Scholar]
  14. D. Zhao, Z. Lu, H. Zhao, X. Li, B. Wang, P. Liu: A review of active control approaches in stabilizing combustion systems in aerospace industry. Progress in Aerospace Sciences 97 (2018) 35–60. [CrossRef] [Google Scholar]
  15. R. Duan, Y. Cao, H. Duan, L. Tian, L. Tian, C. Du, L. Liu, N. Rong, T. Li: Effect of longitudinal baffled blades on the first-order tangential acoustic mode in cylindrical chamber. Energy 183 (2019) 901–911. [CrossRef] [Google Scholar]
  16. R. Duan, Y. Cao, H. Duan, L. Tian, L. Tian, C. Du, L. Liu, N. Rong, T. Li: Effect of the inner-surface baffles on the tangential acoustic mode in the cylindrical. Open Physics 18 (2020) 1215–1222. [CrossRef] [Google Scholar]
  17. A. Pozarlik: Vibro-acoustical instabilities induced by combustion dynamics in gas turbine combustion. PhD thesis, University of Twente, Enschede, The Netherlands, 2010. [Google Scholar]
  18. C.-H. Sohn, I.-S. Park, S.-K. Kim: Effects of mean flow and nozzle damping on acoustic tuning of a resonator in a rocket combustor. Journal of the Korean Society of Propulsion Engineers 10, 3 (2006) 41–47. [Google Scholar]
  19. C.H. Sohn, H.C. Cho: Numerical analysis of acoustic characteristics in gas turbine combustor with spatial non-homogeneity. KSME International Journal 18, 8 (2004) 1461–1469. [CrossRef] [Google Scholar]
  20. D.T. Harrje, F.H. Reardon: Liquid propellant rocket combustion instability. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, D.C, 1972. [Google Scholar]
  21. G. Wu, Z. Lu, Y. Guan, Y. Li, C.Z. Ji: Characterizing nonlinear interaction between a premixed swirling flame and acoustics: heat-driven acoustic mode switching and triggering. Energy 158 (2018) 546–554. [CrossRef] [Google Scholar]
  22. G. Wu, X. Xu, S. Li, C. Ji: Experimental studies of mitigating premixed flame excited thermoacoustic oscillations in T-shaped combustor using an electrical heater. Energy 174 (2019) 1276–1282. [CrossRef] [Google Scholar]
  23. V.N. Emelyanova, I.V. Teterinaa, K.N. Volkovb, U. GarkushevcA: Pressure oscillations and instability of working processes in the combustion chambers of solid rocket motors. Acta Astronautica 135 (2017) 161–171. [CrossRef] [Google Scholar]
  24. J.M. Quinlan, A.T. Kirkpatrick, D. Milano, C.E. Mitchell, T.D. Hinerman: Analytical and numerical development of a baffled liquid rocket combustion stability code. Journal of Propulsion and Power 28 (2012) 122–131. [CrossRef] [Google Scholar]
  25. S. Feng, W. Nie, B. He, F. Zhuang: Control effects of baffle on combustion instability in a LOX/GH2 rocket engine. Journal of Spacecraft and Rockets 47 (2010) 419–426. [CrossRef] [Google Scholar]
  26. C. Lahiri, F. Bake: A review of bias flow liners for acoustic damping in gas turbine combustors. Journal of Sound and Vibration 400 (2017) 564–605. [CrossRef] [Google Scholar]
  27. D. Zhou, X. Wang, J. Chen, X. Jing, X. Sun: Sound generation by nonsynchronously oscillating rotor blades in turbomachinery. Journal of Sound and Vibration 355 (2015) 150–171. [CrossRef] [Google Scholar]
  28. N. Lamarque, T. Poinsot: Boundary conditions for acoustic eigenmodes computation in gas turbine combustion chambers. AIAA Journal 46, 9 (2008) 2282–2292. [CrossRef] [Google Scholar]
  29. M.S. Howe, M.S. Howe: Acoustics of fluid-structure interactions. (Cambridge Monographs on Mechanics) Cambridge University Press, Cambridge, UK, 1998. ISBN-13 978-0521054287. [CrossRef] [Google Scholar]
  30. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of acoustics, in Fundamentals of acoustics, 4th ed., Kinsler LE, Frey AR, Coppens AB, Sanders JV, Editors. Wiley-VCH, Weinheim, Germany. 1999, 560 p. ISBN: 978-0-471-84789-2. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.