Open Access
Issue
Acta Acust.
Volume 6, 2022
Article Number 61
Number of page(s) 14
Section Acoustic Materials and Metamaterials
DOI https://doi.org/10.1051/aacus/2022054
Published online 22 December 2022
  1. ASTM E150–12: Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system. American Society for Testing Material International, 2012. [Google Scholar]
  2. ISO 10534–2: Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part 2: Transfer-function method. International Organization for Standardization, 1998. [Google Scholar]
  3. ISO 354: Acoustics – Measurement of sound absorption in a reverberation room. International Organization for Standardization, 2003. [Google Scholar]
  4. ASTM C423–09a: Standard test method for sound absorption and sound absorption coefficients by the reverberation room method. American Society for Testing Material International, 2009. [Google Scholar]
  5. M. Vercammen: Improving the accuracy of sound absorption measurement according to ISO 354, in Proceedings of the International Symposium on Room Acoustics, Melbourne, Australia, 2010. [Google Scholar]
  6. C.-H. Jeong, J.-H. Chang: Reproducibility of the random incidence absorption coefficient converted from the sabine absorption coefficient. Acta Acustica united with Acustica 101 (2015) 99–112. [CrossRef] [Google Scholar]
  7. J.F. Allard, Y. Champoux: In situ two-microphone technique for the measurement of the acoustic surface impedance of materials. Noise Control Engineering Journal 32 (1989) 15–23. [CrossRef] [Google Scholar]
  8. R. Lanoye, G. Vermeir, W. Lauriks, R. Kruse, V. Mellert: Measuring the free field acoustic impedance and absorption coefficient of sound absorbing materials with a combined particle velocity-pressure sensor. Journal of the Acoustical Society of America 119 (2006) 2826–2831. [CrossRef] [Google Scholar]
  9. J. Ducourneau, V. Planeau, J. Chatillon, A. Nejade, Measurement of sound absorption coefficients of flat surfaces in a workshop, Applied Acoust. 70 (2009) 710–721. [CrossRef] [Google Scholar]
  10. W.-L. Lin, C.-X. Bi, M. Vorländer, Y.-B. Zhang, R. Opdam: In situ measurement of the absorption coefficient based on a time-domain subtraction technique with a particle velocity transducer. Acta Acustica united with Acustica 102 (2016) 945–954. [CrossRef] [Google Scholar]
  11. K. Hirosawa, K. Takashima, H. Nakagawa, M. Kon, A. Yamamoto, W. Lauriks: Comparison of three measurement techniques for the normal absorption coefficient of sound absorbing materials in the free field. Journal of the Acoustical Society of America 126 (2009) 3020–3027. [CrossRef] [PubMed] [Google Scholar]
  12. T. Otsuru, R. Tomiku, N.B.C. Din, N. Okamoto, M. Murakami: Ensemble averaged surface normal impedance of material using an in-situ technique: Preliminary study using boundary element method. Journal of the Acoustical Society of America 125 (2009) 3784–3791. [CrossRef] [PubMed] [Google Scholar]
  13. E. Brandão, A. Lenzi, J. Cordioli: Estimation and minimization of errors caused by sample size effect in the measurement of the normal absorption coefficient of a locally reactive surface. Applied Acoustics 73 (2012) 543–556. [CrossRef] [Google Scholar]
  14. A. Richard, E. Fernandez-Grande: Comparison of two microphone array geometries for surface impedance estimation. Journal of the Acoustical Society of America 146 (2019) 4115–4125. [Google Scholar]
  15. M. Nolan, S. Verburg, J. Brunskog, E. Fernandez-Grande: Experimental characterization of the sound field in a reverberation room. Journal of the Acoustical Society of America 145 (2019) 2237–2246. [CrossRef] [PubMed] [Google Scholar]
  16. S. Dupont, M. Melon, A. Berry: Characterization of acoustic material at oblique incidence using a spherical microphone array. Journal of the Acoustical Society of America 147 (2020) 3613–3625. [CrossRef] [PubMed] [Google Scholar]
  17. M. Nolan: Estimation of angle-dependent absorption coefficients from spatially distributed In situ measurements. Journal of the Acoustical Society of America 147 (2020) EL119–EL124. [CrossRef] [PubMed] [Google Scholar]
  18. O. Robin, A. Berry, O. Doutres, N. Atalla: Measurement of the absorption coefficient of sound absorbing materials under a synthesized diffuse acoustic field. Journal of the Acoustical Society of America 136 (2014) EL13–EL19. [CrossRef] [PubMed] [Google Scholar]
  19. O. Robin, C. Amedin, A. Berry, N. Atalla, O. Doutres, F. Sgard: Assessing sound absorption coefficient under a synthetized diffuse acoustic field: effect of the sample size and nature, in Proceedings of Internoise, 9–15 August 2015, San Francisco, CA, USA, 2015. [Google Scholar]
  20. O. Robin, A. Berry, S. Moreau: Experimental synthesis of spatially-correlated pressure fields for the vibroacoustic testing of panels. Flinovia – Flow Induced Noise And Vibration Issues And Aspects (2015) 151–185. [Google Scholar]
  21. O. Robin, A. Berry, C. Kafui Amédin, N. Atalla, O. Doutres, F. Sgard: Laboratory In situ sound absorption measurement under a synthetized diffuse acoustic field. Building Acoustics 26 (2019) 223–242. [CrossRef] [Google Scholar]
  22. Y. Zhang, Z. Kuang, M. Wu, J. Yang: In-situ measurement of sound absorbing properties using plane-wave sound field reproduced by virtual loudspeaker array. Building and Environment 94 (2015) 883–890. [CrossRef] [Google Scholar]
  23. Y. Zhang, S. Tan, Z. Kuang, M. Wu, J. Yang: Measurement of sound absorbing properties under a plane-wave sound field reproduced by linear loudspeaker array, in 23rd International Congress on Sound & Vibration, Athens, Greece, 10–14 July 2016. [Google Scholar]
  24. J.F. Allard, B. Sieben: Measurements of acoustic impedance in a free field with two microphones and a spectrum analyzer. Journal of the Acoustical Society of America 77 (1985) 1617–1618. [CrossRef] [Google Scholar]
  25. J.F. Allard, N. Atalla: Propagation of sound in porous media: modelling sound absorbing materials. Wiley, 2009. [CrossRef] [Google Scholar]
  26. J. Le Roux, J. Dalmont, N. Poulain: A new device for fluid equivalent parameters assessment, Symposium on the Acoustics of Poro-Elastic Materials (SAPEM), Online, March 29th–April 2nd 2021.. [Google Scholar]
  27. J.F. Allard, W. Lauriks, C. Verhaegen: The acoustic sound field above a porous layer and the estimation of the acoustic surface impedance from free‐field measurements. Journal of the Acoustical Society of America 91 (1992) 3057–3060. [CrossRef] [Google Scholar]
  28. S. Thomasson: Sound propagation above a layer with a large refraction index. Journal of the Acoustical Society of America 61 (1977) 659–674. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.