Issue |
Acta Acust.
Volume 7, 2023
Topical Issue - Audio for Virtual and Augmented Reality
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/aacus/2022055 | |
Published online | 09 January 2023 |
- J. Blauert: Spatial Hearing: The Psychophysics of Human Sound Localization, MIT Press, 1997. [Google Scholar]
- S. Carlile, K. Balachandar, H. Kelly: Accommodating to new ears: the effects of sensory and sensory-motor feedback. Journal of the Acoustical Society of America 135, 4 (2014) 2002–2011. https://doi.org/10.1121/1.4868369. [Google Scholar]
- A. Ahrens, K.D. Lund, M. Marschall, T. Dau: Sound source localization with varying amount of visual information in virtual reality. PloS One 14, 3 (2019) 1–19. https://doi.org/10.1371/journal.pone.0214603. [Google Scholar]
- M. Cuevas-Rodriguez, D.L. Alon, S. Clapp, P.W. Robinson, R. Mehra: Evaluation of the effect of head-mounted display on individualized head-related transfer functions, in International Congress on Acoustics, 2019, pp. 2635–2642. [Google Scholar]
- A. Genovese, A. Roginska: HMDiR: an HRTF dataset measured on a mannequin wearing XR devices, in Audio Engineering Society Conference, Audio Engineering Society, 2019, pp. 2–4. [Google Scholar]
- A. Genovese, G. Zalles, G. Reardon, A. Roginska: Acoustic perturbations in HRTFs measured on mixed reality headsets, in Audio Engineering Society Conference, vol. 8–4, Audio Engineering Society, 2018, pp. 2–16. [Google Scholar]
- R. Gupta, R. Ranjan, J. He, G. Woon-Seng: Investigation of effect of VR/AR headgear on head related transfer functions for natural listening, in Audio Engineering Society Conference, Vol. 3–9, Audio Engineering Society, 2018, pp. 2–10. [Google Scholar]
- C. Pörschmann, J.M. Arend, R. Gillioz: How wearing headgear affects measured head-related transfer functions, in EAA Spatial Audio Signal Processing Symposium, 2019, pp. 49–54. https://doi.org/10.25836/sasp.2019.27. [Google Scholar]
- P. Lladó, T. Mckenzie, N. Meyer-Kahlen, S.J. Schlecht: Predicting perceptual transparency of head-worn devices. Journal of the Audio Engineering Society 70, 7/8 (2022) 585–600. [Google Scholar]
- G. Parseihian, B.F.G. Katz: Rapid head-related transfer function adaptation using a virtual auditory environment. Journal of the Acoustical Society of America 131, 4 (2012) 2948–2957. https://doi.org/10.1121/1.3687448. [Google Scholar]
- D.R. Begault, E.M. Wenzel, M.R. Anderson: Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. Journal of the Acoustical Society of America 490, 10 (2001) 904–916. [Google Scholar]
- H. Bahu, T. Carpentier, M. Noisternig, O. Warusfel: Comparison of different egocentric pointing methods for 3D sound localization experiments. Acta Acustica 102, 1 (2016) 107–118. https://doi.org/10.3813/AAA.918928. [Google Scholar]
- P. Leong, S. Carlile: Methods for spherical data analysis and visualization. Journal of Neuroscience Methods 80, 2 (1998) 191–200. https://doi.org/10.1016/S0165-0270(97)00201-X. [Google Scholar]
- P. Majdak, M.J. Goupell, B. Laback: 3-D localization of virtual sound sources: Effects of visual environment, pointing method, and training. Attention, Perception, & Psychophysics 72, 2 (2010) 454–469. https://doi.org/10.3758/APP.72.2.454. [CrossRef] [PubMed] [Google Scholar]
- J.J. Faraway: Extending Linear Models with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Chapman & Hall, CRC, 2006. [Google Scholar]
- R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2022. https://www.R-project.org/. [Google Scholar]
- F. Zagala, M. Noisternig, B.F.G. Katz: Comparison of direct and indirect perceptual head-related transfer function selection methods. Journal of the Acoustical Society of America 147, 5 (2020) 3376–3389. https://doi.org/10.1121/10.0001183. [Google Scholar]
- D. Poirier-Quinot, M.S. Lawless, P. Stitt, B.F.G. Katz: HRTF performance evaluation: Methodology and metrics for localisation accuracy and learning assessment.In: Dr. B.F.G. Katz, Dr. P. Majdak, Eds., Advances in Fundamental and Applied Research on Spatial Audio, Chapter 2, IntechOpen, Rijeka, 2022. https://doi.org/10.5772/intechopen.104931. [Google Scholar]
- B. Rakerd, W.M. Hartmann: Localization of sound in rooms, II: The effects of a single reflecting surface, Journal of the Acoustical Society of America 78, 2 (1985) 524–533. https://doi.org/10.1121/1.392474. [Google Scholar]
- P. Stitt, L. Picinali, B.F.G. Katz: Auditory accommodation to poorly matched non-individual spectral localization cues through active learning. Scientific Reports 9, 1 (2019) 1–14. https://doi.org/10.1038/s41598-018-37873-0. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.