Issue
Acta Acust.
Volume 7, 2023
Topical Issue - Aeroacoustics: state of art and future trends
Article Number 4
Number of page(s) 22
DOI https://doi.org/10.1051/aacus/2022061
Published online 11 January 2023
  1. Gonçalves da Silva Pinto W.J.: Modelling airframe noise: from aerodynamic topology to acoustic efficiency. PhD Thesis. Université de Poitiers, 2019. Available from: https://tel.archives-ouvertes.fr/tel-02507094. [Google Scholar]
  2. F. Margnat, V. Ioannou, S. Laizet: A diagnostic tool for jet noise using a line-source approach and implicit large-eddy simulation data. Comptes Rendus Mécanique 346, 10 (2018) 903–918. [CrossRef] [Google Scholar]
  3. O.M. Phillips: The intensity of Aeolian tones. Journal of Fluid Mechanics 1, 6 (1956) 607–624. [CrossRef] [Google Scholar]
  4. P. Leehey, C.E. Hanson: Aeolian tones associated with resonant vibration. Journal of Sound and Vibration 13, 4 (1970) 465–483. [CrossRef] [Google Scholar]
  5. D. Casalino, M. Jacob: Prediction of aerodynamic sound from circular rods via spanwise statistical modelling. Journal of Sound and Vibration 262, 4 (2003) 815–844. [CrossRef] [Google Scholar]
  6. H. Fujita: The characteristics of the Aeolian tone radiated from two-dimensional cylinders. Fluid Dynamics Research 42, 1 (2010) 015002. [CrossRef] [Google Scholar]
  7. E. Baroudi: Measurements of two-point correlations of velocity near a circular cylinder shedding a Karman vortex street (Technical Note number 31). University of Toronto (UTIA), Institute of Aerophysics, 1960. [Google Scholar]
  8. S.C. Kacker, B. Pennington, R.S. Hill: Fluctuating lift coefficient for a circular cylinder in cross flows. Journal of Mechanical Engineering Science 16, 4 (1974) 215–224. [CrossRef] [Google Scholar]
  9. J.L.D. Ribeiro: Fluctuating lift and its spanwise correlation on a circular cylinder in a smooth and in a turbulent flow: a critical review. Journal of Wind Engineering and Industrial Aerodynamics 40, 2 (1992) 179–198. [Google Scholar]
  10. S. Szepessy, P.W. Bearman: Aspect ratio and end plate effects on vortex shedding from a circular cylinder. Journal of Fluid Mechanics 234 (1992) 191–217. [CrossRef] [Google Scholar]
  11. G.S. West, C.J. Apelt: Fluctuating lift and drag forces on finite lengths of a circular cylinder in the subcritical Reynolds number range. Journal of Fluids and Structures 11, 2 (1997) 135–158. [CrossRef] [Google Scholar]
  12. C. Norberg: Fluctuating lift on a circular cylinder: review and new measurements. Journal of Fluids and Structures 17, 1 (2003) 57–96. [CrossRef] [Google Scholar]
  13. M.C. Jacob, J. Boudet, D. Casalino, M. Michard: A rod-airfoil experiment as a benchmark for broadband noise modeling. Theoretical and Computational Fluid Dynamics 19, 3 (2005) 171–196. [CrossRef] [Google Scholar]
  14. R. Maryami, M. Azarpeyvand, A.A. Dehghan, A. Afshari: An experimental investigation of the surface pressure fluctuations for round cylinders. Journal of Fluids Engineering 141, 6 (2019) 171–196. [CrossRef] [Google Scholar]
  15. C. Kato, A. Iida, Y. Takano, H. Fujita, M. Ikegawa: Numerical prediction of aerodynamic noise radiated from low Mach number turbulent wake. In: AIAA Paper, 31st Aerospace Sciences Meeting. 1993. [Google Scholar]
  16. S. Nakato, K. Kimura, Y. Fujino, T. Ogawa: Aerodynamic sound from rectangular cylinders at incidence. Journal of Wind Engineering 89 (2001) 133–136. [Google Scholar]
  17. T.F. Geyer: Experimental evaluation of cylinder vortex shedding noise reduction using porous material. Experiments in Fluids 61, 7 (2020) 153–173. [CrossRef] [Google Scholar]
  18. M. Matsumoto, H. Shirato, K. Araki, T. Haramura, T. Hashimoto: Spanwise coherence characteristics of surface pressure field on 2-D bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics 91, 1 (2003) 155–163. [Google Scholar]
  19. T.H. Le, Y. Tamura, M. Matsumoto: Spanwise pressure coherence on prisms using wavelet transform and spectral proper orthogonal decomposition based tools. Journal of Wind Engineering and Industrial Aerodynamics 99, 4 (2011) 499–508. [Google Scholar]
  20. Y. Ito, H. Shirato, M. Matsumoto: Coherence characteristics of fluctuating lift forces for rectangular shape with various fairing decks. Journal of Wind Engineering and Industrial Aerodynamics 135 (2014) 34–45. [Google Scholar]
  21. L. Bruno, M.V. Salvetti, F. Ricciardelli: Benchmark on the aerodynamics of a rectangular 5:1 Cylinder: An overview after the first four years of activity. Journal of Wind Engineering and Industrial Aerodynamics 126, 87 (2014) 106. [Google Scholar]
  22. L. Bruno, N. Coste, D. Fransos: Simulated flow around a rectangular 5:1 cylinder: Spanwise discretisation effects and emerging flow features. Journal of Wind Engineering and Industrial Aerodynamics. 104–106 (2012) 203–215. [Google Scholar]
  23. H. Fujita, W. Sha, H. Furutani, H. Suzuki: Experimental investigations and prediction of aerodynamic sound generated from square cylinders. In: 4th AIAA/CEAS aeroacoustics conference, AIAA Paper 1998–2369. 1998. [Google Scholar]
  24. J.H. Seo, Y.J. Moon: Aerodynamic noise prediction for long-span bodies. Journal of Sound and Vibration 306, 32 (2007) 564–579. [CrossRef] [Google Scholar]
  25. R. Orselli, J. Meneghini, F. Saltara: Two and three-dimensional simulation of sound generated by flow around a circular cylinder. In: 15th AIAA/CEAS Aeroacoustics Conference (Aeroacoustics 2019), AIAA Paper 2009–3270. 2009. [Google Scholar]
  26. A. Rokugou, T. Kiwata, A. Okajima, S. Kimura, H. Yamamoto: Numerical analysis of aerodynamic sound radiated from rectangular cylinder. Journal of Wind Engineering and Industrial Aerodynamics 96, 10 (2008) 2203–2216. [Google Scholar]
  27. C.J. Doolan: Computational bluff body aerodynamic noise prediction using a statistical approach. Applied Acoustics 71, 12 (2010) 1194–1203. [CrossRef] [Google Scholar]
  28. F. Margnat: Hybrid prediction of the aerodynamic noise radiated by a rectangular cylinder at incidence. Computers & Fluids 109 (2015) 13–26. [CrossRef] [Google Scholar]
  29. W.J.G. da Silva Pinto, F. Margnat: A shape optimization procedure for cylinders Aeolian tone. Computers and Fluids 182 (2019) 37–51. [CrossRef] [Google Scholar]
  30. W.J.G. da Silva Pinto, F. Margnat: Shape optimization for the noise induced by the flow over compact bluff bodies. Computers & Fluids 198 (2020) 104400. [CrossRef] [Google Scholar]
  31. H. Bai, Z. Lu, R. Wei, Y. Yang, Y. Liu: Noise reduction of sinusoidal wavy cylinder in subcritical flow regime. Physics of Fluids 33, 10 (2021) 105120. [CrossRef] [Google Scholar]
  32. W.G. Pinto, F. Margnat, C. Noûs: Experimental study of the influence of the shape on the spanwise coherence length of the flow over a bluff body. In: Forum Acusticum, Lyon, France. 2020, pp. 1515–1522. [Google Scholar]
  33. W.J. Pinto, F. Margnat, C. Nouˆs, Influence of the length of a cylinder on its Aeolian Tone Level: Measurement and modelling. In: 14th WCCM-ECCOMAS Congress, Paris, France, Vol. 1500. 2021. [Google Scholar]
  34. B. Ahlborn: The clockwork of vortex shedding. Physics Essays 11 (1998) 144–154. [CrossRef] [Google Scholar]
  35. M. Gruber: Airfoil noise reduction by edge treatments. PhD Thesis. University of Southampton, 2012. [Google Scholar]
  36. M.S. Howe: Sound generation in a fluid with rigid boundaries. Cambridge Monographs on Mechanics. Cambridge University Press, 1998, 157–252. [Google Scholar]
  37. M. Abramovitz, I.A. Stegun: Handbook of mathematical functions. With formulas, graphs and mathematical tables, Dover, 1964. [Google Scholar]
  38. W.J.G.S. Pinto, F. Margnat, Y. Gervais: Effect of cross-section on flow three-dimensionality for prismatic bodies and the associated noise emission. In: 25th AIAA/CEAS Aeroacoustics Conference (Aeroacoustics 2019), AIAA Paper 2019–2531. Delft, The Netherlands, 2019. [Google Scholar]
  39. S. Piantanida, V. Jaunet, J. Huber, W.R. Wolf, P. Jordan, A.V. Cavalieri: Scattering of turbulent-jet wavepackets by a swept trailing edge. The Journal of the Acoustical Society of America 140, 6 (2016) 4350–4359. [CrossRef] [PubMed] [Google Scholar]
  40. I.A. Maia, P. Jordan, A.V.G. Cavalieri, V. Jaunet: Two-point wavepacket modelling of jet noise. Proceedings of the Royal Society A 475, 2227 (2019) 20190199. [CrossRef] [PubMed] [Google Scholar]
  41. K. Karthik, S. Vengadesan, S.K. Bhattacharyya: Prediction of flow induced sound generated by cross flow past finite length circular cylinders. The Journal of the Acoustical Society of America 143, 1 (2018) 260–270. [CrossRef] [PubMed] [Google Scholar]
  42. W.J.G.S. Pinto, F. Margnat: Influence of cylinder breadth and shape on the onset of flow unsteadiness and the Aeolian tone level. Computers & Fluids 228 (2021) 105067. [CrossRef] [Google Scholar]
  43. W.J.G.S. Pinto, F. Margnat, Y. Gervais: Influence of cross-section on the Aeolian tone: a numerical study in the laminar regime. In: 25th AIAA/CEAS Aeroacoustics Conference (Aeroacoustics 2019), AIAA Paper 2019–2532, Delft, The Netherlands. 2019. [Google Scholar]
  44. M.S. Howe: Theory of vortex sound. Cambridge University Press, 2003. [Google Scholar]
  45. X. Gloerfelt, F. Pérot, C. Bailly, D. Juvé: Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers. Journal of Sound and Vibration 287, 1–2 (2005) 129–151. [CrossRef] [Google Scholar]
  46. A. Rohatgi: Webplotdigitizer: Version 4.5. 2021. Available from: https://automeris.io/WebPlotDigitizer. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.