Acta Acust.
Volume 7, 2023
Topical Issue - CFA 2022
Article Number 15
Number of page(s) 11
Published online 12 May 2023
  1. G.W. Swift: Thermoacoustics: A unifying perspective for some engines and refrigerators. Journal of the Acoustical Society of America, Melville, New York, 2002. [Google Scholar]
  2. G.W. Swift: Thermoacoustic engines. Journal of the Acoustical Society of America 84 (1988) 1145–1180. [Google Scholar]
  3. T. Biwa: Introduction to thermoacoustic devices. World Scientific Publishing Company, 2021. [CrossRef] [Google Scholar]
  4. W. Dai, E. Luo, J. Hu, H. Ling: A heat driven thermoacoustic cooler capable of reaching liquid nitrogen temperature. Applied Physics Letters 86 (2005) 224103. [CrossRef] [Google Scholar]
  5. L. Zoontjens, C. Howard, A. Zander, B. Cazzolato: Feasibility study of an automotive thermo acoustics refrigerator, in Proceedings of Acoustics, 9–11 November 2005, Busselton, Western Australia. 2005. [Google Scholar]
  6. J.A. Adeff, T.J. Hofler: Design and construction of a solar-powered, thermoacoustically driven, thermoacoustic refrigerator. Journal of the Acoustical Society of America 107, 6 (2005) L37–L42. [Google Scholar]
  7. S. Backhaus, E. Tward, M. Petach: Traveling wave thermoacoustic electric generator. Applied Physics Letters 85 (2004) 1085. [CrossRef] [Google Scholar]
  8. S. Spoelstra, M.E.H. Tijani: Thermoacoustic heat pumps for energy savings, in seminar “Boundary crossing acoustics” of the Acoustical Society of the Netherlands, 23 November 2005, ECN. 2005. [Google Scholar]
  9. O. Symko, E. AbdelRahman, Y. Kwon, M. Emmi, R. Behunin: Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics. Microelectronics Journal 35 (2004) 185–191. [Google Scholar]
  10. B. Lihoreau, P. Lotton, G. Penelet, M. Bruneau: Thermoacoustic, small cavity excitation to achieve optimal performance. Acta Acustica United with Acustica 97 (2011) 926–932. [CrossRef] [Google Scholar]
  11. M.E.H. Tijani, S. Spoelstra: Study of a coaxial thermoacoustic-stirling cooler. Cryogenics 48 (2008) 77–82. [CrossRef] [Google Scholar]
  12. R. Smith, M. Poese, S. Garett, R. Wakeland: Thermoacoustic device. US Patent no. 0192324 A1, 2003. [Google Scholar]
  13. G. Poignand, B. Lihoreau, P. Lotton, E. Gaviot, M. Bruneau, V. Gusev: Optimal acoustic fields in compact thermoacoustic refrigerators. Applied Acoustics 68 (2007) 642–659. [CrossRef] [Google Scholar]
  14. G. Poignand, P. Lotton, G. Penelet, M. Bruneau: Small cavity excitation to achieve optimal performance. Acta Acustica United with Acustica 97 (2011) 926–932. [CrossRef] [Google Scholar]
  15. G. Poignand, A. Podkovskiy, G. Penelet, P. Lotton, M. Bruneau: Analysis of a coaxial, compact thermoacoustic heat pump. Acta Acustica United with Acustica 99 (2013) 898–904. [CrossRef] [Google Scholar]
  16. I.A. Ramadan, H. Bailliet, G. Poignand, D. Gardner: Design, manufacturing and testing of a compact thermoacoustic refrigerator. Applied Thermal Engineering 189 (2021) 116705. [CrossRef] [Google Scholar]
  17. B. Ward, J. Clark, G.W. Swift: Design Environment for Low-amplitude Thermoacoustic Energy Conversion (DeltaEC Version 6.2). Users Guide, Los Alamos National Laboratory, 2008. [Google Scholar]
  18. N. Rott: Damped and thermally driven acoustic oscillations in wide and narrow tubes. Zeitschrift für Angewandte Mathematik und Physik 20 (1969) 230–243. [Google Scholar]
  19. N. Rott: Thermoacoustics. Advances in Applied Mechanics 20 (1980) 135–243. [CrossRef] [Google Scholar]
  20. W.P. Arnott, H.E. Bass, R. Raspet: General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross section. Journal of the Acoustical Society of America 90 (1991) 3228–3237. [Google Scholar]
  21. E. Matthew, E. Poese, S.L. Garrett: Performance measurements on a thermoacoustic refrigerator driven at high amplitudes. Journal of the Acoustical Society of America 107, 5 (2000) 2480–2486. [Google Scholar]
  22. C. Scalo, S.K. Lele, L. Hesselink: Linear and nonlinear modelling of a theoretical travelling-wave thermoacoustic heat engine. Journal of Fluid Mechanics 766 (2015) 368–404. [Google Scholar]
  23. C. Shen, Y. He, Y. Li, H. Ke, D. Zhang, Y. Liu: Performance of solar powered thermoacoustic engine at different tilted angles. Applied Thermal Engineering 29, 13 (2000) 2745–2756. [Google Scholar]
  24. N. Pan, S. Wang, C. Shen: Visualization investigation of the flow and heat transfer in thermoacoustic engine driven by loudspeaker. International Journal of Heat and Mass Transfer 55 (2012) 7737–7746. [CrossRef] [Google Scholar]
  25. D. Marx, P. Blanc-Benon: Computation of the temperature distortion in the stack of a standing-wave thermoacoustic refrigerator. Journal of the Acoustical Society of America 118 (2005) 2993–2999. [Google Scholar]
  26. A. Kierkegaard, S. Boij, G. Efraimsson: A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges. Journal of the Acoustical Society of America 127 (2010) 710–719. [Google Scholar]
  27. Y. Fraigneau: SUNFLUIDH : A software for computional fluid dynamics, User guide. LIMSI, 2013., 2013. [Google Scholar]
  28. A. Worlikar, O. Knio: Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack. Numerical Heat Transfer, Part A 35 (1999) 49–65. [Google Scholar]
  29. A.S. Worlikar, O.M. Knio, R. Klein: Numerical simulation of a thermoacoustic refrigerator. II: Stratified flow around the stack. Journal of Computational Fluids 144 (1998) 299–324. [Google Scholar]
  30. P. Duthil, C. Weisman, E. Bretagne, M.-X. François: Experimental and numerical investigation of heat transfer and flow within a thermoacoustic cell. International Journal of Transport Phenomena 6 (2004) 265–272. [Google Scholar]
  31. O. Hireche, C. Weisman, D. Baltean-Carlès, P. Le Quéré, L. Bauwens: Low Mach number analysis of idealized thermoacoustic engines with numerical solution. Journal of the Acoustical Society of America 128, 6 (2010) 3438–3448. [Google Scholar]
  32. L. Ma, C. Weisman, D. Baltean-Carlès, I. Delbende, L. Bauwens: Effect of a resistive load on the starting performance of a standing wave thermoacoustic engine: A numerical study. Journal of the Acoustical Society of America 138, 2 (2015) 847–857. [Google Scholar]
  33. Y. Fraigneau, N. de Pinho Dias, C. Weisman, D. Baltean-Carlès: Numerical simulation of thermoacoustic heat pumping inside a compact cavity, in 16ème Congrès Français d’Acoustique, 11–15 April 2022, Marseille. 2022. [Google Scholar]
  34. S. Paolucci: On the filtering of sound from the Navier-Stokes equations. Report No. SAND82-8257, Sandia National Laboratories, 1982. [Google Scholar]
  35. R. Klein: Multiple spatial scales in engineering and atmospheric low Mach number flows. ESAIM: Mathematical Modelling and Numerical Analysis 39 (2005) 537–559. [CrossRef] [EDP Sciences] [Google Scholar]
  36. K. Goda: A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows. Journal of Computational Physics 30 (1979) 76–95. [Google Scholar]
  37. R. Knikker: A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows. International Journal for Numerical Methods in Fluids 66 (2011) 403–427. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.