Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 16
Number of page(s) 9
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2023007
Published online 12 May 2023
  1. P. Guillemain, J. Kergomard, T. Voinier: Real-time synthesis of clarinet-like instruments using digital impedance models. Journal of the Acoustical Society of America 118, 1 (2005) 483–494. [CrossRef] [PubMed] [Google Scholar]
  2. G.P. Scavone: An acoustic analysis of single-reed woodwind instruments with an emphasis on design and performance issues and digital waveguide modeling techniques, PhD thesis, Stanford University, Stanford, CA, 1997. [Google Scholar]
  3. R. Mignot: Réalisation en guides d’ondes numériques stables d’un modèle acoustique réaliste pour la simulation en temps-réel d’instruments à vent. PhD thesis, Télécom ParisTech, 2009. [Google Scholar]
  4. S. Bilbao: Numerical sound synthesis: finite difference schemes and simulation in musical acoustics, John Wiley & Sons, 2009. [Google Scholar]
  5. A. Ernoult, J. Chabassier, S. Rodriguez, A. Humeau: Full waveform inversion for bore reconstruction of woodwind-like instruments. Acta Acustica 5 (2021) 47. [CrossRef] [EDP Sciences] [Google Scholar]
  6. S. Bilbao, J. Chick: Finite difference time domain simulation for the brass instrument bore. Journal of the Acoustical Society of America 134, 5 (2013) 3860–3871. [CrossRef] [PubMed] [Google Scholar]
  7. P. Guillemain, J. Terroir: Digital synthesis models of clarinet-like instruments including nonlinear losses in the resonator, in the 9th International Conference on Digital Audio Effects, (2006). 83. [Google Scholar]
  8. B. Bergeot, A. Almeida, B. Gazengel, C. Vergez, D. Ferrand: Response of an artificially blown clarinet to different blowing pressure profiles. Journal of the Acoustical Society of America 135, 1 (2014) 479–490. [CrossRef] [PubMed] [Google Scholar]
  9. A. Chaigne, J. Kergomard: Acoustics of musical instruments, Springer. 2016. [CrossRef] [Google Scholar]
  10. J.H.M. Disselhorst, L. Van Wijngaarden: Flow in the exit of open pipes during acoustic resonance. Journal of Fluid Mechanics 99, 2 (1980) 293–319. [CrossRef] [Google Scholar]
  11. U. Ingård, S. Labate: Acoustic circulation effects and the nonlinear impedance of orifices. Journal of the Acoustical Society of America 22, 2 (1950) 211–218. [CrossRef] [Google Scholar]
  12. M. Atig, J.-P. Dalmont, J. Gilbert: Saturation mechanism in clarinet-like instruments, the effect of the localised non-linear losses. Applied Acoustics 65, 12 (2004) 1133–1154. [CrossRef] [Google Scholar]
  13. J.-P. Dalmont, C. Frappé: Oscillation and extinction thresholds of the clarinet: comparison of analytical results and experiments. Journal of the Acoustical Society of America 122, 2 (2007) 1173–1179. [CrossRef] [PubMed] [Google Scholar]
  14. P.-A. Taillard: Theoretical and experimental study of the role of the reed in clarinet playing. PhD thesis, Université du Maine, 2018. [Google Scholar]
  15. M. Atig, J.-P. Dalmont, J. Gilbert: Termination impedance of open-ended cylindrical tubes at high sound pressure level. Comptes Rendus Mécanique 332, 4 (2004) 299–304. [CrossRef] [Google Scholar]
  16. J.-P. Dalmont, C. Nederveen, V. Dubos, S. Ollivier, V. Méserette, E. Sligte: Experimental determination of the equivalent circuit of an open side hole: linear and non linear behaviour. Acta Acustica united with Acustica 88 (2002) 567–575. [Google Scholar]
  17. D. Diab, D. Dragna, E. Salze, M.-A. Galland: Nonlinear broadband time-domain admittance boundary condition for duct acoustics. application to perforated plate liners. Journal of Sound and Vibration 528 (2022) 116892. [CrossRef] [Google Scholar]
  18. Z. Laly, N. Atalla, S.-A. Meslioui: Acoustical modeling of micro-perforated panel at high sound pressure levels using equivalent fluid approach. Journal of Sound and Vibration 427 (2018) 134–158. [CrossRef] [Google Scholar]
  19. V. Dubos, J. Kergomard, A. Khettabi, J.-P. Dalmont, D.H. Keefe, C.J. Nederveen: Theory of sound propagation in a duct with a branched tube using modal decomposition. Acta Acustica united with Acustica 85, 2 (1999) 153–169. [Google Scholar]
  20. F. Silva, V. Debut, J. Kergomard, C. Vergez, A. Deblevid, P. Guillemain: Simulation of single reed instruments oscillations based on modal decomposition of bore and reed dynamics, in Proceedings of the International Congress of Acoustics, 2007. [Google Scholar]
  21. P.-A. Taillard, F. Silva, Ph Guillemain, J. Kergomard: Modal analysis of the input impedance of wind instruments. application to the sound synthesis of a clarinet. Applied Acoustics 141 (2018) 271–280. [CrossRef] [Google Scholar]
  22. V. Chatziioannou, M. Van Walstijn: Estimation of clarinet reed parameters by inverse modelling. Acta Acustica united with Acustica 98, 4 (2012) 629–639. [CrossRef] [Google Scholar]
  23. F. Silva, Ph Guillemain, J. Kergomard, B. Mallaroni, A.N. Norris: Approximation formulae for the acoustic radiation impedance of a cylindrical pipe. Journal of Sound and Vibration 322, 1–2 (2009) 255–263. [CrossRef] [Google Scholar]
  24. T. Colinot, L. Guillot, C. Vergez, P. Guillemain, J.-B. Doc, B. Cochelin: Influence of the “ghost reed” simplification on the bifurcation diagram of a saxophone model. Acta Acustica united with Acustica 105, 6 (2019) 1291–1294. [CrossRef] [Google Scholar]
  25. T.A. Wilson, G.S. Beavers: Operating modes of the clarinet. Journal of the Acoustical Society of America 56, 2 (1974) 653–658. [CrossRef] [Google Scholar]
  26. J.-P. Dalmont, J. Gilbert, S. Ollivier: Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements. Journal of the Acoustical Society of America 114, 4 (2003) 2253–2262. [CrossRef] [PubMed] [Google Scholar]
  27. T. Colinot: Numerical simulation of woodwind dynamics: investigating nonlinear sound production behavior in saxophone-like instruments. PhD thesis, Laboratoire de Mécanique et d'Acoustique [Marseille], November, 2020. [Google Scholar]
  28. F. Silva, J. Kergomard, C. Vergez, J. Gilbert: Interaction of reed and acoustic resonator in clarinetlike systems. Journal of the Acoustical Society of America 124, 5 (2008) 3284–3295. [CrossRef] [PubMed] [Google Scholar]
  29. M. Atig: Non-linéarité acoustique localisée à l’extrémité ouverte d’un tube. Mesure, modélisation et application aux instruments à vent. PhD thesis, Université du Maine, 2004. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.