Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 22
Number of page(s) 14
Section Environmental Noise
DOI https://doi.org/10.1051/aacus/2023009
Published online 26 May 2023
  1. L. Enghardt, T.F. Geyer: Lärmminderungspotential elektrifizierter Luftfahrtantriebe. In: DAGA 2022 – 48. Jahrestagung für Akustik, DEGA, Paper 0476. 2022, pp. 572–575. [Google Scholar]
  2. European Commission, Directorate-General for Mobility and Transport, Directorate-General for Research and Innovation: Flightpath 2050 – Europe's vision for aviation – maintaining global leadership and serving society's needs. Publications Office, 2012. https://data.europa.eu/doi/10.2777/15458. [Google Scholar]
  3. A.H. Epstein, S.M. O’Flarity: Considerations for reducing aviation's CO2 with aircraft electric propulsion. Journal of Propulsion and Power 35, 3 (2019) 572–582. https://doi.org/10.2514/1.B37015. [Google Scholar]
  4. A.R. Gnadt, R.L. Speth, J.S. Sabnis, S.R. Barrett: Technical and environmental assessment of all-electric 180-passenger commercial aircraft. Progress in Aerospace Sciences 105 (2019) 1–30. https://doi.org/10.1016/j.paerosci.2018.11.002. [Google Scholar]
  5. B. Sarlioglu, C.T. Morris: More electric aircraft: Review, challenges, and opportunities for commercial transport aircraft. IEEE Transactions on Transportation Electrification 1, 1 (2015) 54–64. https://doi.org/10.1109/TTE.2015.2426499. [Google Scholar]
  6. H. Schefer, L. Fauth, T.H. Kopp, R. Mallwitz, J. Friebe, M. Kurrat: Discussion on electric power supply systems for all electric aircraft. IEEE Access 8 (2020) 84188–84216. https://doi.org/10.1109/ACCESS.2020.2991804. [Google Scholar]
  7. C. Pornet, C. Gologan, P.C. Vratny, A. Seitz, O. Schmitz, A.T. Isikveren, M. Hornung: Methodology for sizing and performance assessment of hybrid energy aircraft. Journal of Aircraft 52, 1 (2015) 341–352. https://doi.org/10.2514/1.C032716. [Google Scholar]
  8. D.F. Finger, C. Braun, C. Bil: An initial sizing methodology for hybrid-electric light aircraft. In: 2018 Aviation Technology, Integration, and Operations Conference, AIAA Paper 2018-4229, 2018. https://doi.org/10.2514/6.2018-4229. [Google Scholar]
  9. M. Voskuijl, J. Van Bogaert, A.G. Rao: Analysis and design of hybrid electric regional turboprop aircraft. CEAS Aeronautical Journal 9, 1 (2018) 15–25. https://doi.org/10.1007/s13272-017-0272-1. [Google Scholar]
  10. R. de Vries, M. Brown, R. Vos: Preliminary sizing method for hybrid-electric distributed-propulsion aircraft. Journal of Aircraft 56, 6 (2019) 2172–2188. https://doi.org/10.2514/1.C035388. [Google Scholar]
  11. P.G. Juretzko, M. Immer, J. Wildi: Performance analysis of a hybrid-electric retrofit of a RUAG Dornier Do 228NG. CEAS Aeronautical Journal 11, 1 (2020) 263–275. https://doi.org/10.1007/s13272-019-00420-2. [Google Scholar]
  12. G.M. Bravo, N. Praliyev, A. Veress: Performance analysis of hybrid electric and distributed propulsion system applied on a light aircraft. Energy 214 (2021) 118823. https://doi.org/10.1016/j.energy.2020.118823. [Google Scholar]
  13. M.K. Bradley, C.K. Droney: Subsonic Ultra Green Aircraft Research: Phase II--volume II--hybrid electric design exploration. NASA Contractor Report CR-218704, NASA, 2015. [Google Scholar]
  14. A.P. Synodinos, R.H. Self, A.J. Torija: Framework for predicting noise–power–distance curves for novel aircraft designs. Journal of Aircraft 55, 2 (2018) 781–791. https://doi.org/10.2514/1.C034466. [Google Scholar]
  15. A.P. Synodinos, R.H. Self, A.J. Torija: Preliminary noise assessment of aircraft with distributed electric propulsion. In: AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2018-2817. 2018. https://doi.org/10.2514/6.2018-2817. [Google Scholar]
  16. J.J. Berton, D.M. Nark: Low-noise operating mode for propeller-driven electric airplanes. Journal of Aircraft 56, 4 (2019) 1708–1714. https://doi.org/10.2514/1.C035242. [Google Scholar]
  17. Z.S. Spakovszky: Advanced low-noise aircraft configurations and their assessment: past, present, and future. CEAS Aeronautical Journal 10, 1 (2019) 137–157. https://doi.org/10.1007/s13272-019-00371-8. [Google Scholar]
  18. Z. Huang, H. Yao, A. Lundbladh, L. Davidson: Low-noise propeller design for quiet electric aircraft. In: AIAA Aviation Forum, AIAA Paper 2020-2596. 2020. https://doi.org/10.2514/6.2020-2596 [Google Scholar]
  19. J.L. Thomas, R.J. Hansman: Community noise assessment of hybrid-electric aircraft using windmilling drag on approach. Journal of Aircraft 58, 5 (2021) 971–981. https://doi.org/10.2514/1.C036177. [Google Scholar]
  20. P. Wassink, G. Atanasov, C. Hesse, B. Fröhler: Conceptual design of silent electric commuter aircraft. In: 32nd Congress of the International Council of the Aeronautical Sciences6–10 September, Shanghai, China. ICAS, 2021. [Google Scholar]
  21. E. Greenwood, K.S. Brentner, R.F. Rau, Z.F. Ted Gan: Challenges and opportunities for low noise electric aircraft. International Journal of Aeroacoustics 21, 5–7 (2022) 315–381. https://doi.org/10.1177/1475472X221107377. [Google Scholar]
  22. B. Zaghari, A. Kiran, T. Sinnige, E. Pontika, H.B. Enalou, T. Kipouros, P. Laskaridis: The impact of electric machine and propeller coupling design on electrified aircraft noise and performance. In: AIAA SciTech Forum, AIAA Paper 2023-2133. 2023. https://doi.org/10.2514/6.2023-2133. [Google Scholar]
  23. L.M. Iversen, G. Marbjerg, H. Bendtsen: Noise from electric vehicles – “State of the art” literature survey. In: INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Vol. 247, No. 8, pp. 267–271. Institute of Noise Control Engineering. 2013. [Google Scholar]
  24. M.D. Moore, W.J. Fredericks: Misconceptions of electric propulsion aircraft and their emergent aviation markets. In: 52nd Aerospace Sciences Meeting, AIAA SciTech Forum, AIAA Paper 2014-535. 2014. https://doi.org/10.2514/6.2014-0535. [Google Scholar]
  25. Rolls Royce: The jet engine. John Wiley & Sons, 2015. [Google Scholar]
  26. International Civil Aviation Organization: Annex 16 to the Convention on International Civil Aviation – Environmental Protection, Volume 1 – Aircraft Noise, 5th edn.. ICAO, 2008. [Google Scholar]
  27. O. Zaporozhets, V. Tokarev, K. Attenborough: Aircraft Noise – Assessment, prediction and control. CRC Press, 2011. [Google Scholar]
  28. D.B. Hanson: Noise of counter-rotation propellers. Journal of Aircraft 22, 7 (1985) 609–617. https://doi.org/10.2514/3.45173. [Google Scholar]
  29. R.P. Woodward: Noise of two high-speed model counter-rotation propellers at takeoff/approach conditions. Journal of Aircraft 29, 4 (1992) 679–685. https://doi.org/10.2514/3.46219. [Google Scholar]
  30. W.J. Bräunling: Flugzeugtriebwerke: Grundlagen, Aero-Thermodynamik, ideale und reale Kreisprozesse, Thermische Turbomaschinen, Komponenten, Emissionen und Systeme. Springer-Verlag, 2015. [Google Scholar]
  31. A. McAlpine, M.J. Fisher: On the prediction of “buzz-saw” noise in aero-engine inlet ducts. Journal of Sound and Vibration 248, 1 (2001) 123–149. https://doi.org/10.1006/jsvi.2001.3770. [Google Scholar]
  32. E. Envia: Fan noise reduction: an overview. International Journal of Aeroacoustics 1, 1 (2002) 43–64. https://doi.org/10.1260/1475472021502668. [Google Scholar]
  33. D.L. Sutliff, M.G. Jones: Low-speed fan noise attenuation from a foam-metal liner. Journal of Aircraft 46, 4 (2009) 1381–1394. https://doi.org/10.2514/1.41369. [Google Scholar]
  34. D.L. Sutliff, M.G. Jones, T.C. Hartley: High-speed turbofan noise reduction using foam-metal liner over-the-rotor. Journal of Aircraft 50, 5 (2013) 1491–1503. https://doi.org/10.2514/1.C032021. [Google Scholar]
  35. R.P. Woodward, D.M. Elliott, C.E. Hughes, J.J. Berton: Benefits of swept-and-leaned stators for fan noise reduction. Journal of Aircraft 38, 6 (2001) 1130–1138. https://doi.org/10.2514/2.2883. [Google Scholar]
  36. L. Enghardt, U. Tapken, W. Neise, P. Schimming, R. Maier, J. Zillmann: Active control of fan noise from high-bypass ratio aeroengines: experimental results. The Aeronautical Journal 106, 1063 (2002) 501–506. https://doi.org/10.1017/S0001924000092356. [Google Scholar]
  37. W. Dobrzynski: Almost 40 years of airframe noise research: what did we achieve? Journal of Aircraft 47, 2 (2010) 353–367. https://doi.org/10.2514/1.44457. [Google Scholar]
  38. D. Casalino, F. Diozzi, R. Sannino, A. Paonessa: Aircraft noise reduction technologies: A bibliographic review. Aerospace Science and Technology 12, 1 (2008) 1–17. https://doi.org/10.1016/j.ast.2007.10.004. [Google Scholar]
  39. EASA Type-Certificate Data Sheet no. EASA E.047 for RB211 Trent 800 series engines. https://www.easa.europa.eu/en/downloads/7717/en. 2019. [Google Scholar]
  40. EASA Type-Certificate Data Sheet no. EASA E.111 for Trent XWB series engines. https://www.easa.europa.eu/en/downloads/7635/en. 2019. [Google Scholar]
  41. K.W. Bushell: A survey of low velocity and coaxial jet noise with application to prediction. Journal of Sound and Vibration 17, 2 (1971) 271–282. https://doi.org/10.1016/0022-460X(71)90461-5. [Google Scholar]
  42. M.J. Lighthill: On sound generated aerodynamically I. General theory. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 211, 1107 (1952) 564–587. https://doi.org/10.1098/rspa.1952.0060. [Google Scholar]
  43. J. Delfs, L. Bertsch, C. Zellmann, L. Rossian, E. Kian Far, T. Ring, S.C. Langer: Aircraft noise assessment – from single components to large scenarios. Energies 11, 2 (2018) 429. https://doi.org/10.3390/en11020429. [Google Scholar]
  44. M.F. Heidmann: Interim prediction method for fan and compressor source noise. NASA Technical Memorandum X-71763. National Aeronautics and Space Administration, Scientific and Technical Information Branch, Washington, DC. 1975. [Google Scholar]
  45. D.L. Huff, B.S. Henderson, E. Envia: Motor noise for electric powered aircraft. In: 22nd AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2016-2882. 2016. https://doi.org/10.2514/6.2016-2882. [Google Scholar]
  46. X. Zhang, C.L. Bowman, T.C. O’Connell, K.S. Haran: Large electric machines for aircraft electric propulsion. IET Electric Power Applications 12, 6 (2018) 767–779. https://doi.org/10.1049/iet-epa.2017.0639. [Google Scholar]
  47. R.C. Bolam, Y. Vagapov, A. Anuchin: A review of electrical motor topologies for aircraft propulsion. In: 55th International Universities Power Engineering Conference (UPEC), Turin, Italy. 2020, pp. 1–6. https://doi.org/10.1109/UPEC49904.2020.9209783 [Google Scholar]
  48. J.F. Gieras, C. Wang, J.C. Lai: Noise of polyphase electric motors. CRC Press, 2018. [Google Scholar]
  49. R.D. Bruce, C.T. Moritz, A.S. Bommer: Sound power level predictions for industrial machinery. In: M.J. Crocker, Ed. Handbook of noise and vibration control. John Wiley & Sons. 2007, pp. 1001–1009. [Google Scholar]
  50. S.L. Nau, H.G. Mello: Acoustic noise in induction motors: causes and solutions. In: Record of Conference Papers. Industry Applications Society Forty-Seventh Annual Conference. 2000 Petroleum and Chemical Industry Technical Conference (Cat. No. 00CH37112). IEEE. 2000, pp. 253–263. https://doi.org/10.1109/PCICON.2000.882782. [Google Scholar]
  51. F.B. Oswald, D.P. Townsend, M.J. Valco, R.H. Spencer, R.J. Drago, J.W. Lenski: Influence of gear design on gearbox radiated noise. Gear Technology 15, 1 (1998) 10–15. [Google Scholar]
  52. R.H. Thomas, C.L. Burley, C.L. Nickol, Assessment of the noise reduction potential of advanced subsonic transport concepts for NASA’s Environmentally Responsible Aviation Project. In: 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-0863. 2016. https://doi.org/10.2514/6.2016-0863. [Google Scholar]
  53. F. Petrosino, M. Barbarino, M. Staggat: Aeroacoustics assessment of an hybrid aircraft configuration with rear-mounted boundary layer ingested engine. Applied Sciences 11, 7 (2021) 2936. https://doi.org/10.3390/app11072936. [Google Scholar]
  54. A. Moreau, S. Guérin: Development and application of a new procedure for fan noise prediction. In: 16th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2010-4034. 2010. https://doi.org/10.2514/6.2010-4034. [Google Scholar]
  55. L. Bertsch, W. Dobrzynski, S. Guérin: Tool development for low-noise aircraft design. Journal of Aircraft 47, 2 (2010) 694–699. https://doi.org/10.2514/1.43188. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.