Issue |
Acta Acust.
Volume 7, 2023
Topical Issue - Audio for Virtual and Augmented Reality
|
|
---|---|---|
Article Number | 23 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/aacus/2023018 | |
Published online | 02 June 2023 |
- P. Bórawski, A. Bełdycka-Bórawska, K.J. Jankowski, B. Dubis, J.W. Dunn: Development of wind energy market in the european union. Renewable Energy 161 (2020) 691–700. [CrossRef] [Google Scholar]
- E. Pedersen, K.P. Waye: Perception and annoyance due to wind turbine noise – A dose-response relationship. The Journal of the Acoustical Society of America 116, 6 (2004) 3460–3470. [CrossRef] [PubMed] [Google Scholar]
- K.L. Hansen, P. Nguyen, G. Micic, B. Lechat, P. Catcheside, B. Zajamšek: Amplitude modulated wind farm noise relationship with annoyance: A year-long field study. The Journal of the Acoustical Society of America 150, 2 (2021) 1198–1208. [CrossRef] [PubMed] [Google Scholar]
- B. Zajamšek, K.L. Hansen, C.J. Doolan, C.H. Hansen: Characterisation of wind farm infrasound and low-frequency noise, Journal of Sound and Vibration 370 (2016) 176–190. [CrossRef] [Google Scholar]
- B. Zajamsek, Y. Yauwenas, C.J. Doolan, K.L. Hansen, V. Timchenko, J. Reizes, C.H. Hansen: Experimental and numerical investigation of blade–tower interaction noise. Journal of Sound and Vibration 443 (2019) 362–375. [CrossRef] [Google Scholar]
- J.N. Pinder: Mechanical noise from wind turbines. Wind Engineering (1992) 158–168. [Google Scholar]
- M. Yonemura, H. Lee, S. Sakamoto: Subjective evaluation on the annoyance of environmental noise containing low-frequency tonal components. International Journal of Environmental Research and Public Health 18, 13 (2021) 7127. [CrossRef] [PubMed] [Google Scholar]
- D. Bowdler: Amplitude modulation of wind turbine noise: a review of the evidence. Institute of Acoustics Bulletin 33, 4 (2008) 31–41. [Google Scholar]
- R. Pieren, K. Heutschi, M. Müller, M. Manyoky, K. Eggenschwiler: Auralization of wind turbine noise: Emission synthesis. Acta Acustica United with Acustica 1001 (2014) 25–33. [CrossRef] [Google Scholar]
- S. Lee, S. Lee, S. Lee: Numerical modeling of wind turbine aerodynamic noise in the time domain. The Journal of the Acoustical Society of America 133, 2 (2013) EL94–EL100. [CrossRef] [PubMed] [Google Scholar]
- K. Bolin, M.E. Nilsson, S. Khan: The potential of natural sounds to mask wind turbine noise. Acta Acustica united with Acustica 96, 1 (2010) 131–137. [CrossRef] [Google Scholar]
- G.P. Van den Berg: Wind-induced noise in a screened microphone. The Journal of the Acoustical Society of America 119, 2 (2006) 824–833. [CrossRef] [Google Scholar]
- K. Heutschi, R. Pieren, M. Müller, M. Manyoky, U.W. Hayek, K. Eggenschwiler: Auralization of wind turbine noise: Propagation filtering and vegetation noise synthesis. Acta Acustica united with Acustica 100, 1 (2014) 13–24. [CrossRef] [Google Scholar]
- M. Arntzen, D.G. Simons: Modeling and synthesis of aircraft flyover noise. Applied Acoustics 84 (2014) 99–106. [CrossRef] [Google Scholar]
- R. Pieren, D. Lincke: Auralization of aircraft flyovers with turbulence-induced coherence loss in ground effect. The Journal of the Acoustical Society of America 151, 4 (2022) 2453–2460. [CrossRef] [PubMed] [Google Scholar]
- Y. Tian, B. Cotté: Wind turbine noise modeling based on amiet’s theory: Effects of wind shear and atmospheric turbulence. Acta Acustica united with Acustica 102, 4 (2016) 626–639. [CrossRef] [Google Scholar]
- S. Oerlemans, J.G. Schepers: Prediction of wind turbine noise and validation against experiment. International Journal of Aeroacoustics 8, 6 (2009) 555–584. [CrossRef] [Google Scholar]
- F. Bertagnolio, H.A. Madsen, A. Fischer: A combined aeroelastic-aeroacoustic model for wind turbine noise: Verification and analysis of field measurements. Wind Energy 20, 8 (2017) 1331–1348. [CrossRef] [Google Scholar]
- P. Blanc-Benon, L. Dallois, D. Juvé: Long range sound propagation in a turbulent atmosphere within the parabolic approximation. Acta Acustica united with Acustica 87, 6 (2001) 659–669. [Google Scholar]
- B. Gauvreau, M. Bérengier, P. Blanc-Benon, C. Depollier: Traffic noise prediction with the parabolic equation method: Validation of a split-step padé approach in complex environments. The Journal of the Acoustical Society of America 112, 6 (2002) 2680–2687. [CrossRef] [PubMed] [Google Scholar]
- M.J. White, K.E. Gilbert: Application of the parabolic equation to the outdoor propagation of sound. Applied Acoustics 27, 3 (1989) 227–238. [CrossRef] [Google Scholar]
- E. Barlas, W.J. Zhu, W.Z. Shen, K.O. Dag, P. Moriarty: Consistent modelling of wind turbine noise propagation from source to receiver. The Journal of the Acoustical Society of America 142, 5 (2017) 3297–3310. [CrossRef] [PubMed] [Google Scholar]
- B. Cotté; Coupling of an aeroacoustic model and a parabolic equation code for long range wind turbine noise propagation. Journal of Sound and Vibration 422 (2018) 343–357. [CrossRef] [Google Scholar]
- B. Cotté: Extended source models for wind turbine noise propagation. The Journal of the Acoustical Society of America 145, 3 (2019) 1363–1371. [CrossRef] [PubMed] [Google Scholar]
- B. Kayser, B. Gauvreau, D. Ecotière: Sensitivity analysis of a parabolic equation model to ground impedance and surface roughness for wind turbine noise. The Journal of the Acoustical Society of America 146, 5 (2019) 3222–3231. [CrossRef] [PubMed] [Google Scholar]
- V.E. Ostashev, D. Keith Wilson, M.B. Muhlestein: Wave and extra-wide-angle parabolic equations for sound propagation in a moving atmosphere. The Journal of the Acoustical Society of America 147, 6 (2020) 3969–3984. [CrossRef] [PubMed] [Google Scholar]
- B. Kayser, D. Mascarenhas, B. Cotté, D. Ecotière, B. Gauvreau: Validity of the effective sound speed approximation in parabolic equation models for wind turbine noise propagation. The Journal of the Acoustical Society of America 153, 3 (2023) 1846–1854. [CrossRef] [PubMed] [Google Scholar]
- E. Salomons, D. Van Maercke, J. Defrance, F. de Roo: The harmonoise sound propagation model. Acta Acustica united with Acustica 97, 1 (2011) 62–74. [Google Scholar]
- D. Mascarenhas, B. Cotté, O. Doaré: Synthesis of wind turbine trailing edge noise in free field. JASA Express Letters 2, 3 (2022) 033601. [CrossRef] [PubMed] [Google Scholar]
- E.M. Salomons: Computational atmospheric acoustics. Springer Science & Business Media. 2001. [CrossRef] [Google Scholar]
- R.K. Amiet: Noise due to turbulent flow past a trailing edge. Journal of Sound and Vibration 47, 3 (1976) 387–393. [CrossRef] [Google Scholar]
- M. Roger, S. Moreau: Extensions and limitations of analytical airfoil broadband noise models. International Journal of Aeroacoustics 9, 3 (2010) 273–305. [CrossRef] [Google Scholar]
- G.M. Corcos: Resolution of pressure in turbulence. The Journal of the Acoustical Society of America 35, 2 (1963) 192–199. [CrossRef] [Google Scholar]
- M. Goody: Empirical spectral model of surface pressure fluctuations. AIAA Journal 42, 9 (2004) 1788–1794. [CrossRef] [Google Scholar]
- S. Lee: Empirical wall-pressure spectral modeling for zero and adverse pressure gradient flows. AIAA Journal 56, 5 (2018) 1818–1829. [CrossRef] [Google Scholar]
- Y. Rozenberg, G. Robert, S. Moreau: Wall-pressure spectral model including the adverse pressure gradient effects. AIAA Journal 50, 10 (2012) 2168–2179. [CrossRef] [Google Scholar]
- R.K. Amiet: Acoustic radiation from an airfoil in a turbulent stream. Journal of Sound and vibration 41, 4 (1975) 407–420. [CrossRef] [Google Scholar]
- V.E. Ostashev, D. Keith Wilson: Acoustics in moving inhomogeneous media. CRC Press. 2015. [CrossRef] [Google Scholar]
- S. Buck, S. Oerlemans, S. Palo: Experimental validation of a wind turbine turbulent inflow noise prediction code. AIAA Journal 56, 4 (2018) 1495–1506. [CrossRef] [Google Scholar]
- S. Sinayoko, M. Kingan, A. Agarwal: Trailing edge noise theory for rotating blades in uniform flow. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, 2157 (2013) 20130065. [CrossRef] [Google Scholar]
- V.E. Ostashev, D. Keith Wilson: Relative contributions from temperature and wind velocity fluctuations to the statistical moments of a sound field in a turbulent atmosphere. Acta Acustica united with Acustica 86, 2 (2020) 260–268. [Google Scholar]
- D. Muñoz-Esparza, R.D. Sharman, J.K. Lundquist: Turbulence dissipation rate in the atmospheric boundary layer: Observations and wrf mesoscale modeling during the xpia field campaign. Monthly Weather Review 146, 1 (2018) 351–371. [CrossRef] [Google Scholar]
- D. Mascarenhas: Physics-based synthesis of wind turbine noise. PhD thesis. ENSTA Paris, Institut Polytechnique de Paris. 2023. [Google Scholar]
- G.P. Van den Berg: Wind turbine power and sound in relation to atmospheric stability. Wind Energy 11, 2 (2008) 151–169. [CrossRef] [Google Scholar]
- Y. Miki: Acoustical properties of porous materials-modifications of delany-bazley models. Journal of the Acoustical Society of Japan (E) 11, 1 (1990) 19–24. [CrossRef] [Google Scholar]
- G. Guillaume, O. Faure, B. Gauvreau, F. Junker, M. Bérengier, P. L’Hermite: Estimation of impedance model input parameters from in situ measurements: Principles and applications. Applied Acoustics 95 (2015) 27–36. [CrossRef] [Google Scholar]
- D. Mascarenhas, B. Cotté, O. Doaré: Supplementary audio files: Propagation effects in the synthesis of wind turbine noise [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7044407. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.