Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 50
Number of page(s) 8
Section Environmental Noise
DOI https://doi.org/10.1051/aacus/2023048
Published online 20 October 2023
  1. E. Murphy: What to do about environmental noise? Acoustics Today 13, 2 (2017) 18–25. [Google Scholar]
  2. I. van Kamp, F. van den Berg: Health effects related to wind turbine sound, including low-frequency sound and infrasound. Acoustics Australia 46, 1 (2018) 31–57. https://doi.org/10.1007/s40857-017-0115-6. [CrossRef] [Google Scholar]
  3. F. van den Berg, I. van Kamp: Audibility and health effects of infrasound, in: 9th International Conference on Wind Turbine Noise (WTN 2021), Online, 18–21 May 2021, Curran Associates Inc, Red Hook, NY, 2021, pp. 492–498. [Google Scholar]
  4. M. Sonnberger, M. Ruddat: Local and socio-political acceptance of wind farms in Germany. Technology in Society 51 (2017) 56–65. https://doi.org/10.1016/j.techsoc.2017.07.005. [CrossRef] [Google Scholar]
  5. K. Langer, T. Decker, J. Roosen, K. Menrad: Factors influencing citizens’ acceptance and non-acceptance of wind energy in Germany. Journal of Cleaner Production 175 (2018) 133–144. https://doi.org/10.1016/j.jclepro.2017.11.221. [CrossRef] [Google Scholar]
  6. S.E. Keith, K. Feder, S.A. Voicescu, V. Soukhovtsev, A. Denning, J. Tsang, N. Broner, W. Richarz, F. van den Berg: Wind turbine sound power measurements. Journal of the Acoustical Society of America 139, 3 (2016) 1431–1435. https://doi.org/10.1121/1.4942405. [CrossRef] [PubMed] [Google Scholar]
  7. L. Gaßner, E. Blumendeller, F.J.Y. Müller, M. Wigger, A. Rettenmeier, P.W. Cheng, G. Hübner, J. Ritter, J. Pohl: Joint analysis of resident complaints, meteorological, acoustic, and ground motion data to establish a robust annoyance evaluation of wind turbine emissions. Renewable Energy 188 (2022) 1072–1093. https://doi.org/10.1016/j.renene.2022.02.081. [CrossRef] [Google Scholar]
  8. J. Marty: The IMS infrasound network: current status and technological developments, in: A. Le Pichon, E. Blanc, A. Hauchecorne (Eds.), Infrasound monitoring for atmospheric studies, 2nd ed. Springer, Cham, 2018, pp. 3–62. [Google Scholar]
  9. J.D. Assink, R. Waxler, W.G. Frazier, J. Lonzaga: The estimation of upper atmospheric wind model updates from infrasound data. Journal of Geophysical Research: Atmospheres 118 (2013) 10707–10724. https://doi.org/10.1002/jgrd.50833. [Google Scholar]
  10. B.R. Elbing, C.E. Petrin, M.S. van den Broeke: Measurement and characterization of infrasound from a tornado producing storm. Journal of the Acoustical Society of America 146 (2019) 1528–1540. https://doi.org/10.1121/1.5124486. [CrossRef] [PubMed] [Google Scholar]
  11. G.B. Deane: The underwater sound of glacers. Acoustics Today 15, 4 (2019) 12–19. [CrossRef] [Google Scholar]
  12. A.L. DiMattia, F.M. Wiener: On the absolute pressure calibration of condenser microphones by the reciprocity method. Journal of the Acoustical Society of America 18, 2 (1946) 341–344. [CrossRef] [Google Scholar]
  13. J. Avison, R. Barham: Final report on key comparison CCAUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 Hz to 10 kHz. Metrologia 51, 1A (2014) 9007. [Google Scholar]
  14. R. Barham, S. Barrera-Figueroa, J.E.M. Avison: Secondary pressure calibration of measurement microphones. Metrologia 51, 3 (2014) 129. [CrossRef] [Google Scholar]
  15. S. Barrera-Figueroa: Free-field reciprocity calibration of measurement microphones at frequencies up to 150 kHz. Journal of the Acoustical Society of America 144, 4 (2018) 2575–2583. [CrossRef] [PubMed] [Google Scholar]
  16. A. Prato, N. Montali, C. Guglielmone, A. Schiavi: Pressure calibration of a digital microelectromechanical system microphone by comparison. Journal of the Acoustical Society of America 144, 4 (2018) EL297–EL303. [CrossRef] [PubMed] [Google Scholar]
  17. R.P. Wagner, S.E. Fick: Pressure reciprocity calibration of a MEMS microphone. Journal of the Acoustical Society of America 142, 3 (2017) 251–257. [Google Scholar]
  18. IEC 61672: Electroacoustics – Sound level meters. https://webstore.iec.ch/publication/5708. [Google Scholar]
  19. 19ENV03 Infra-AUV: Metrology for low-frequency sound and vibration: infrasound primary methods, 2020. Available at https://www.ptb.de/empir2020/infra-auv/information-communication/background/infrasound-primary-methods/. [Google Scholar]
  20. P. Vincent, D. Rodrigues, F. Larsonnier, C. Guianvarc’h, S. Durand: Acoustic transfer admittance of cylindrical cavities in infrasonic frequency range. Metrologia 56, 1 (2019) 15003. [Google Scholar]
  21. IEC 61094–2:2009+AMD1:2022: Electroacoustics – Measurement microphones – Part 2: Primary method for pressure calibration of laboratory standard microphones by the reciprocity technique. https://webstore.iec.ch/publication/74047. [Google Scholar]
  22. IEC TR 61094–10:2022: Electroacoustics – Measurement microphones – Part 10: Absolute pressure calibration of microphones at low frequencies using calculable pistonphones. https://webstore.iec.ch/publication/29863. [Google Scholar]
  23. C. Kling, C. Koch, M. Rust, R. Barham, D. Rodrigues, S. Barrera Figueroa, E. Sandermann Olsen: Specifications and testing strategies for measurement devices for noise exposure determination in the infrasound frequency range, PTB Open Access Repository, 2021. Available at https://oar.ptb.de/resources/show/10.7795/EMPIR.19ENV03.RE.20210609 [Google Scholar]
  24. D.R. Jarvis: The accuracy of the electrostatic actuator method of determining the frequency response of condenser microphones. Journal of Sound and Vibration 123, 1 (1988) 63–70. [CrossRef] [Google Scholar]
  25. IEC 61094–5:2016: Electroacoustics – Measurement microphones – Part 5: Methods for pressure calibration of working standard microphones by comparison. https://webstore.iec.ch/publication/24988. [Google Scholar]
  26. M. Rust, C. Koch: Microphone measurements in the vicinity of wind power plants: Results for the wind park in Gagel, Saxony Anhalt, Germany. PTB Open Access Repository, 2021. Available at https://oar.ptb.de/resources/show/10.7795/720.20211130. [Google Scholar]
  27. IEC 61260-1:2014: Electroacoustics – Octave-band and fractional-octave-band filters – Part 1: Specifications. https://webstore.iec.ch/publication/5063. [Google Scholar]
  28. O. Marcillo, S. Arrowsmith, P. Blom, K. Jones: On infrasound generated by wind farms and its propagation in low-altitude tropospheric waveguides. Journal of Geophysical Research: Atmospheres 120, 19 (2015) 9855–9868. [CrossRef] [Google Scholar]
  29. Bruel & Kjaer: Microphone handbook, volume 1: theory (BE 1447-12), 2019. Available at https://www.bksv.com/media/doc/be1447.pdf. [Google Scholar]
  30. B. Goelzer, C.H. Hansen, G.A. Sehrndt: Occupational exposure to noise: evaluation, prevention and control. World Health Organization, Dortmund, Germany, 2001. [Google Scholar]
  31. International Civil Aviation Organization: Guidance on the balanced approach to aircraft noise management (ICAO 9829), 2nd edn. ICAO, 2008. [Google Scholar]
  32. D. Jarosińska, M.-È. Héroux, P. Wilkhu, J. Creswick, J. Verbeek, J. Wothge, E. Paunović: Development of the WHO environmental noise guidelines for the European region: an introduction. International Journal of Environmental Research and Public Health 15, 4 (2018) 813. https://doi.org/10.3390/ijerph15040813. [CrossRef] [PubMed] [Google Scholar]
  33. DIN 45680:1997-03: Messung und Bewertung tieffrequenter Geräuschimmissionen in der Nachbarschaft. (English title: Measurement and assessment of low-frequency noise emissions in the neighbourhood). https://www.beuth.de/de/norm/din-45680/2917742. [Google Scholar]
  34. A.T. Moorhouse, D.C. Waddington, M.D. Adams: A procedure for the assessment of low frequency noise complaints. Journal of the Acoustical Society of America 126 (2009) 1131–1141. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.