Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 18
Number of page(s) 6
Section Hearing, Audiology and Psychoacoustics
DOI https://doi.org/10.1051/aacus/2023016
Published online 24 May 2023
  1. I. Brons, W.A. Dreschler, R. Houben: Detection threshold for sound distortion resulting from noise reduction in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America 136, 3 (2014) 1375–1384. [CrossRef] [PubMed] [Google Scholar]
  2. P. Kendrick, I.R. Jackson, F.F. Li, T.J. Cox, B.M. Fazenda: Perceived Audio Quality of Sounds Degraded by Perceived audio quality of sounds degraded by non-linear distortions and single-ended assessment using HASQI. Journal of the Audio Engineering Society 63, 9 (2015) 698–712. [CrossRef] [Google Scholar]
  3. J. Agnew: The causes and effects of distortion and internal noise in hearing aids. Trends in Amplification 3, 3 (1998) 82–118. [CrossRef] [PubMed] [Google Scholar]
  4. R. Huber, B. Kollmeier: PEMO-Q – a new method for objective audio quality assessment using a model of auditory perception. IEEE Transactions on Audio, Speech, and Language Processing 14, 6 (2006) 1902–1911. [CrossRef] [Google Scholar]
  5. ITU-T P.810: Modulated Noise Reference Unit (MNRU). International Telecommunication Union, Feb. 1996. [Google Scholar]
  6. A.M. Kubiak, J. Rennies, S.D. Ewert, B. Kollmeier: Relation between hearing abilities and preferred playback settings for speech perception in complex listening conditions. International Journal of Audiology 2021 (2021) 1–10. [Google Scholar]
  7. A. Takahashi, H. Yoshino, N. Kitawaki: Perceptual QoS assessment technologies for VoIP. IEEE Communications Magazine 42, 7 (2004) 28–34. [CrossRef] [Google Scholar]
  8. M. Krueger, M. Schulte, T. Brand, I. Holube: Development of an adaptive scaling method for subjective listening effort. Journal of the Acoustical Society of America 141, 6 (2017) 4680–4693. [CrossRef] [PubMed] [Google Scholar]
  9. ITU-T P.800: Methods for subjective determination of transmission quality. International Telecommunication Union, Aug. 1996. [Google Scholar]
  10. J. Thiemann: Acoustic noise supression for speech signals using auditory masking effects. Master Thesis. Department for Electrical & Computer Engineering, McGill University, Montreal, Canada. 2001. Accessed: Sep. 29 2022. [Online]. Available: https://escholarship.mcgill.ca/concern/theses/vm40xt64p. [Google Scholar]
  11. S. Boll: Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech, and Signal Processing 27, 2 (1979) 113–120. [CrossRef] [Google Scholar]
  12. B. Hagerman, A. Olofsson: A method to measure the effect of noise reduction algorithms using simultaneous speech and noise. Acta Acustica United with Acustica 90, 2 (2004) 356–361. [Google Scholar]
  13. K. Wagener, T. Brand, B. Kollmeier: Development and evaluation of a German sentence test Part II: Optimization of the Oldenburg sentence test. Zeitschrift Für Audiologie 38, 2 (1999) 44–56. [Google Scholar]
  14. K. Wagener, T. Brand, B. Kollmeier: Development and evaluation of a German sentence test Part III: Evaluation of the Oldenburg sentence test. Zeitschrift Für Audiologie 38, 3 (1999) 86–95. [Google Scholar]
  15. K. Wagener, V. Kühnel, B. Kollmeier: Development and evaluation of a German sentence test. Part I: Design of the Oldenburg sentence test. Zeitschrift Für Audiologie 38, 1 (1999) 4–15. [Google Scholar]
  16. M. Berouti, R. Schwartz, J. Makhoul: Enhancement of speech corrupted by acoustic noise. IEEE International Conference on Acoustics, Speech, and Signal Processing. 1979, 208–2011. https://doi.org/10.1109/ICASSP.1979.1170788. [Google Scholar]
  17. T. Brand, V. Hohmann: An adaptive procedure for categorical loudness scaling. Journal of the Acoustical Society of America 112, 4 (2002) 1597–1604. [CrossRef] [PubMed] [Google Scholar]
  18. D. Oetting, T. Brand, S.D. Ewert: Optimized loudness-function estimation for categorical loudness scaling data. Hearing Research 316 (2014) 16–27. [CrossRef] [PubMed] [Google Scholar]
  19. S.D. Ewert: AFC-A modular framework for running psychoacoustic experiments and computational perception models, in Proceedings of the International Conference on Acoustics AIA-DAGA, 18–21 March 2023, Merano, Italy. 2013, 1326–1329. [Google Scholar]
  20. R. Huber, M. Krüger, B.T. Meyer: Single-ended prediction of listening effort using deep neural networks. Hearing Research 359 (2018) 40–49. [CrossRef] [PubMed] [Google Scholar]
  21. R. Huber, H. Baumgartner, V.N. Krishnan, S. Goetze, J. Rennies-Hochmuth: Single-ended prediction of listening effort for English speech, in DAGA 2020 – 46th Annual Meeting for Acoustics, 16–19 March 2023, Hannover, Germany. 2020, 774–777. [Google Scholar]
  22. J. Rennies, S. Röttges, R. Huber, C.F. Hauth, T. Brand: A joint framework for blind prediction of binaural speech intelligibility and perceived listening effort. Hearing Research 426 (2022) 108598. [CrossRef] [PubMed] [Google Scholar]
  23. R. Huber, A. Pusch, N. Moritz, J. Rennies, H. Schepker, B.T. Meyer: Objective assessment of a speech enhancement scheme with an automatic speech recognition-based system, in Speech Communication; 13th ITG-Symposium, 10–12 October 2018, Oldenburg, Germany. 2018, 1–5. [Google Scholar]
  24. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal of Optimization 9, 1 (1998) 112–147. [CrossRef] [Google Scholar]
  25. J.A. Gößwein: addMusicalNoise. 2023. Accessed: Jan. 17 2023. [Online]. Available: https://github.com/goesjon/addMusicalNoise. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.