Open Access
Issue |
Acta Acust.
Volume 7, 2023
|
|
---|---|---|
Article Number | 48 | |
Number of page(s) | 19 | |
Section | Room Acoustics | |
DOI | https://doi.org/10.1051/aacus/2023044 | |
Published online | 18 October 2023 |
- J. Reinten, P.E. Braat-Eggen, M. Hornikx, H.S. Kort, A. Kohlrausch: The indoor sound environment and human task performance: a literature review on the role of room acoustics. Building and Environment 123 (2017) 315–332. [CrossRef] [Google Scholar]
- A. Kaarlela-Tuomaala, R. Helenius, E. Keskinen, V. Hongisto: Effects of acoustic environment on work in private office rooms and open-plan offices – longitudinal study during relocation. Ergonomics 52, 11 (2009) 1423–1444. [CrossRef] [PubMed] [Google Scholar]
- G. Levandoski, P.H.T. Zannin: Quality of life and acoustic comfort in educational environments of Curitiba, Brazil. Journal of Voice 36, 3 (2022) 436.e9–436.e16. [CrossRef] [PubMed] [Google Scholar]
- A. Astolfi, F. Pellerey: Subjective and objective assessment of acoustical and overall environmental quality in secondary school classrooms. The Journal of the Acoustical Society of America 123, 1 (2008) 163–173. [CrossRef] [PubMed] [Google Scholar]
- S.H. Park, P.J. Lee, B.K. Lee, M. Roskams, B.P. Haynes: Associations between job satisfaction, job characteristics, and acoustic environment in open-plan offices. Applied Acoustics 168 (2020) 1–10. [Google Scholar]
- K. Loh, E. Kurz, J. Fels: Objective and subjective assessment of acoustics in open-plan offices. In: Proceeding of the 23rd International Congress on Acoustics, Aachen, Germany, 2019, p. 2406. [Google Scholar]
- L. Savioja, U.P. Svensson: Overview of geometrical room acoustic modeling techniques. The Journal of the Acoustical Society of America 138, 2 (2015) 708–730. [CrossRef] [PubMed] [Google Scholar]
- M. Vorländer: Computer simulations in room acoustics: Concepts and uncertainties. The Journal of the Acoustical Society of America 133, 3 (2013) 1203–1213. [CrossRef] [PubMed] [Google Scholar]
- A. Prato, F. Casassa, A. Schiavi: Reverberation time measurements in non-diffuse acoustic field by the modal reverberation time. Applied Acoustics 110 (2016) 160–169. [CrossRef] [Google Scholar]
- J. Balint and F. Kaiser: Multi-exponential decay curves in auditoriums. In: Proceedings of Auditorium Acoustics, vol. 40.3, Institute of Acoustics, Hamburg, Germany. Oct. 2018, pp. 418–426. [Google Scholar]
- J. Oelmann, X. Zha: Zur Messung von “Nachhallzeiten” bei geringer Eigenfrequenzdichte (On the measurement of “reverberation times” at low eigenfrequency density). Rundfunktechnische Mitteilungen 30, 6 (1986) 257–268. [Google Scholar]
- H.V. Fuchs, J. Lamprecht: Covered broadband absorbers improving functional acoustics in communication rooms. Applied Acoustics 74, 1 (2013) 18–27. [CrossRef] [Google Scholar]
- E. Kurz, D. Reisinger, W. Weselak, G. Graber: The edge absorber as a modal brake. In: Proceedings of Forum Acusticum. Lyon, France, Dec. 2020, European Acoustics Association. pp. 1745–1752. https://doi.org/10.48465/fa.2020.0574. [Google Scholar]
- D.-Y. Maa: Non-uniform acoustical boundaries in rectangular rooms. The Journal of the Acoustical Society of America 12, 1 (1940) 39–52. [CrossRef] [Google Scholar]
- M. Möser: Engineering Acoustics: An Introduction To Noise Control, 2nd edn., Springer, Berlin, Heidelberg, 2009. [CrossRef] [Google Scholar]
- E. Kurz, A. Steffek, W. Weselak, G. Kubin: Interference patterns in an edge of a cuboid reverberation chamber. In: Proceedings of 48th German Annual Conference on Acoustics – DAGA 2022, Stuttgart, Germany. 2022. [Google Scholar]
- R.V. Waterhouse: Interference patterns in reverberant sound fields. The Journal of the Acoustical Society of America 27, 2 (1955) 247–258. [CrossRef] [Google Scholar]
- C. Sevastiadis, G. Kalliris, G. Papanikolaou: Analysis tool development for the investigation of low frequency room acoustics by means of finite element method. In: Proceedings of 128th Audio Engineering Society Convention 2010. May 2010, Audio Engineering Society. pp. 364–371. [Google Scholar]
- T. Okuzono, K. Sakagami: A finite-element formulation for room acoustics simulation with microper-forated panel sound absorbing structures: verification with electro-acoustical equivalent circuit theory and wave theory. Applied Acoustics 95 (2015) 20–26. ISSN: 0003–682X [CrossRef] [Google Scholar]
- T. Okuzono, K. Sakagami: A frequency domain finite element solver for acoustic simulations of 3D rooms with microperforated panel absorbers. Applied Acoustics 129 (2018) 1–12. [CrossRef] [Google Scholar]
- T. Okuzono, T. Yoshida, K. Sakagami, T. Otsuru: An explicit time-domain finite element method for room acoustics simulations: comparison of the performance with implicit methods. Applied Acoustics 104 (2016) 76–84. [CrossRef] [Google Scholar]
- T. Yoshida, T. Okuzono, K. Sakagami: A parallel dissipation-free and dispersion-optimized explicit time-domain FEM for large-scale room acoustics simulation. Buildings 12, 2 (2022) 1–29. [Google Scholar]
- T. Okuzono, T. Yoshida, K. Sakagami: A time-domain FEM for wave-based room acoustic simulations: acoustic modeling of a meeting room with various sound absorber configurations. In: ICA 2022. International Congress on Acoustics. 2022, p. 24. [Google Scholar]
- S. Schoder, K. Ropper: openCFS: open source finite element software for coupled field simulation part acoustics, 2022. https://doi.org/10.48550/arXiv.2207.04443. [Google Scholar]
- M. Kaltenbacher, S. Floss, Nonconforming finite elements based on Nitsche-type mortaring for inhomogeneous wave equation. Journal of Theoretical and Computational Acoustics 26, 03 (2018) 1850028. [CrossRef] [Google Scholar]
- S. Floss, F. Czwielong, M. Kaltenbacher, S. Becker: Design of an in-duct micro-perforated panel absorber for axial fan noise attenuation. Acta Acustica 5 (2021) 24. [CrossRef] [EDP Sciences] [Google Scholar]
- S. Floss: Mitigation of sound by micro-perforated absorbers in different types of sound fields – design and evaluation. PhD thesis, TU Vienna, 2022. https://doi.org/10.34726/hss.2022.57522. [Google Scholar]
- R. Hofer: Analyse des modalen Schallfeldes zur Untersuchung der Funktionsweise von Kantenabsorbern (Analysis of the modal sound field to study the operation of edge absorbers). MA thesis, Graz University of Technology, 2022. https://search.obvsg.at/permalink/f/kqmjpo/OBV_alma71540645190003331. [Google Scholar]
- TU Graz LFB: Labor für Bauphysik (Laboratory for building physics). Homepage, 2023. [accessed on 2023–01-20]. https://www.tugraz.at/arbeitsgruppen/lfb/labor-fuer-bauphysik-tu-graz. [Google Scholar]
- H. Kuttruff: Room acoustics, 5th edn., Spon Press, 2009. [Google Scholar]
- Y. Champoux, J.-F. Allard: Dynamic tortuosity and bulk modulus in air-saturated porous media. Journal of Applied Physics 70, 4 (1991) 1975–1979. [CrossRef] [Google Scholar]
- D.L. Johnson, J. Koplik, R. Dashen: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics 176 (1987) 379–402. [Google Scholar]
- D. Lafarge, P. Lemarinier, J.F. Allard, V. Tarnow: Dynamic compressibility of air in porous structures at audible frequencies. The Journal of the Acoustical Society of America 102, 4 (1997) 1995–2006. [CrossRef] [Google Scholar]
- MathWorks: MATLAB Documentation: Genetic Algorithm. version 9.12.0 (R2022a), Natick, Massachusetts, 2022. https://de.mathworks.com/help/gads/ga.html. [Google Scholar]
- B.H. Song, J.S. Bolton: A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials. The Journal of the Acoustical Society of America 107, 3 (2000) 1131–1152. https://doi.org/10.1121/1.428404 [CrossRef] [PubMed] [Google Scholar]
- D. Li, D. Chang, B. Liu: Diffuse sound absorptive properties of parallel-arranged perforated plates with extended tubes and porous materials. Materials 13 (2020) 1091. [CrossRef] [PubMed] [Google Scholar]
- F. Kraxberger, E. Kurz, L. Merkel, M. Kaltenbacher, S. Schoder, Finite element simulation of edge absorbers for room acoustic applications. In: Proceedings of 49th German Annual Conference on Acoustics – DAGA 2023, Hamburg, Germany Mar. 2023, pp. 1292–1295. [Google Scholar]
- ISO 354: 2003: Acoustics – measurement of sound absorption in a reverberation room, Standard International Organization for Standardization, Geneva, 2003. [Google Scholar]
- LOUD Technologies Inc.: Mackie SRM1850 owner’s manual. Mackie, June 2014. https://www.manualslib.com/manual/714739/Mackie-Srm1850.html. [Google Scholar]
- Norsonic: Data sheet of Dodecahedron Loudspeaker Nor276 and Power Amplifier Nor280. Norsonic AS. [Google Scholar]
- M. Carstens: User’s guide RME fireface UCX. RME audio, July 2018. [Google Scholar]
- M. Berzborn, R. Bomhardt, J. Klein, J.-G. Richter, M. Vorländer: ITA-toolbox an open source matlab toolbox for acousticians. In: Proceedings of 43rd German Annual Conference on Acoustics – DAGA 2017, Kiel, Germany. 2017, pp. 6–9. [Google Scholar]
- A. Lundeby, E. Vigran, H. Bietz, M. Vorländer: Uncertainties of measurement in room acoustics. Acta Acustica united with Acustica 81, 4 (1995) 344–355. [Google Scholar]
- L. Cremer, H.A. Müller: Die wissenschaftlichen Grundlagen der Raumakustik, Band II. S. Hirzel Verlag, Stuttgart, 1978. [Google Scholar]
- J.H. Rindel: Sound insulation in buildings, Taylor & Francis, 2018. [Google Scholar]
- EN 1992-1-1 Eurocode 2: design of concrete structures – part 1–1: general rules and rules for buildings. Standard, European Committee for Standardization, Brussels, 2004. [Google Scholar]
- EurocodeApplied.com: Eurocode 2 – table of concrete design parameters, 2023 [accessed on 2023–05-10]. https://eurocodeapplied.com/design/en1992/concrete-design-properties. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.