Issue
Acta Acust.
Volume 7, 2023
Topical Issue - The Sound of Ancient Theatres
Article Number 67
Number of page(s) 14
DOI https://doi.org/10.1051/aacus/2023059
Published online 14 December 2023
  1. J.C. Piquette: Direct measurements of edge diffraction from soft underwater acoustic panels. Journal of the Acoustical Society of America 95 (1994) 3090–3099. [CrossRef] [Google Scholar]
  2. H. Medwin, C.S. Clay: Fundamentals of acoustical oceanography (Applications of modern acoustics). Academic Press, San Diego. 1997. [Google Scholar]
  3. F. John, M. Cimdins, H. Hellbrück: Underwater ultrasonic multipath diffraction model for short range communication and sensing applications. IEEE Sensors Journal 21 (2021) 22934–22943. [CrossRef] [Google Scholar]
  4. K. Huh, R. Agarval, S. Widnall: Numerical simulation of acoustic diffraction of two-dimensional rigid bodies in arbitrary flows, in: 13th Aeroacoustics Conf, 1990. [Google Scholar]
  5. M. Roger, S. Moreau, K. Kucukcoskun: On sound scattering by rigid edges and wedges in a flow, with applications to high-lift device aeroacoustics. Journal of Sound and Vibration 362 (2016) 252–275. [CrossRef] [Google Scholar]
  6. H. Medwin, E. Childs, G.M. Jebsen: Impulse studies of double diffraction: A discrete Huygens interpretation. Journal of the Acoustical Society of America 72 (1982) 1005–1013. [Google Scholar]
  7. J.H. Rindel: Attenuation of sound reflections due to diffraction, in: Proc. of Nordic Acoustical Meeting (NAM), 1986, pp. 257–260. [Google Scholar]
  8. U.P. Svensson, R.I. Fred, J. Vanderkooy: An analytic secondary source model of edge diffraction impulse responses. Journal of the Acoustical Society of America 106 (1999) 2331–2344. [CrossRef] [Google Scholar]
  9. P. Menounou, I.J. Busch-Vishniac, D.T. Blackstock: Directive line source model: A new model for sound diffraction by half planes and wedges. Journal of the Acoustical Society of America 107 (2000) 2973–2986. [CrossRef] [PubMed] [Google Scholar]
  10. S.T. Cho, V.W. Sparrow: Diffraction of sonic booms around buildings resulting in the building spiking effect. Journal of the Acoustical Society of America 129 (2011) 1250–1260. [CrossRef] [PubMed] [Google Scholar]
  11. M.C. Remillieux, J.M. Corcoran, T.R. Haac, R.A. Burdisso, U.P. Svensson: Experimental and numerical study on the propagation of impulsive sound around buildings. Applied Acoustics 73 (2012) 1029–1044. [CrossRef] [Google Scholar]
  12. M.C. Remillieux, S.M. Pasareanu, U.P. Svensson: Numerical modeling of the exterior-to-interior transmission of impulsive sound through three-dimensional, thin-walled elastic structures. Journal of Sound and Vibration 332 (2013) 6725–6742. [CrossRef] [Google Scholar]
  13. R. Mehra, N. Raghuvanshi, A. Chandak, D.G. Albert, D.K. Wilson, D. Manocha: Acoustic pulse propagation in an urban environment using a three-dimensional numerical simulation. Journal of the Acoustical Society of America 135, 6 (2014) 3231–3242. [CrossRef] [PubMed] [Google Scholar]
  14. R.M. Bews, M.J. Hawksford: Application of the Geometric Theory of Diffraction (GTD) to diffraction at the edges of loudspeaker baffles. Journal of the Audio Engineering Society 34, 10 (1986) 1–9. [Google Scholar]
  15. J. Vanderkooy: A simple theory of cabinet edge diffraction. Journal of the Audio Engineering Society 39 (1991) 923–933. [Google Scholar]
  16. FI.T. Agerkvist: A study of simple diffraction models, in: 102nd AES Conv, 1997, p. 4438. [Google Scholar]
  17. M. Urban, C. Heil, C. Pignon, C. Combet, P. Bauman: The Distributed Edge Dipole (DED) model for cabinet diffraction effects. Journal of the Audio Engineering Society 52, 10 (2004) 1043–1059. [Google Scholar]
  18. T. Skogberg: Loudspeaker Cabinet Diffraction. Acoustical Technology, Ørsted●DTU, 2006. [Google Scholar]
  19. B.M. Fazenda, I. Drumm: Recreating the sound of Stonehenge. Acta Acustica 99, 1 (2013) 110–117. [CrossRef] [Google Scholar]
  20. D. Lubman: Uncanny acoustic effects at Chichen Itza: Intentional design? The Acoustics of Ancient Theatres Conf., Patras. 2011. [Google Scholar]
  21. D. Lubman: On the acoustics of Maya pyramids. Journal of the Acoustical Society of America 137 (2015) 2427–2427. [CrossRef] [Google Scholar]
  22. N. Declercq, C. Dekeyser: Acoustic diffraction effects at the Hellenistic amphitheatre of Epidaurus. Journal of the Acoustical Society of America 121, 4 (2007) . [Google Scholar]
  23. T. Lokki, A. Southern, S. Siltanen, L. Savioja: Studies of Epidaurus with a hybrid room acoustics modelling method, in: The Acoustics of Ancient Theatres Conf, Patras. 2011. [Google Scholar]
  24. P. Economou, P. Charalampous: The significance of sound diffraction effects in simulating acoustics in ancient theatres. Acta Acustica United with Acustica 99 (2013) 48–57. [CrossRef] [Google Scholar]
  25. A. Farnetani, N. Prodi, R. Pompoli: On the acoustics of ancient Greek and Roman theatres. Journal of the Acoustical Society of America 124, 3 (2008) 1557–1567. [CrossRef] [PubMed] [Google Scholar]
  26. S. Vassilantonopoulos, P. Hatziantoniou, N.-A. Tatlas, T. Zakynthinos, D. Skarlatos, J.N. Mourjopoulos: Measurement and Analysis of the Acoustics of Epidaurus, The Acoustics of Ancient Theatres Conf, Patras. 2011. [Google Scholar]
  27. A. Farnetani, N. Prodi, P. Fausti: Validation of a numerical code for the edge diffraction on a scale model of an ancient theatre, The Acoustics of Ancient Theatres Conf, Patras. 2011. [Google Scholar]
  28. S.L. Vassilantonopoulos, J.M. Mourjopoulos: Virtual acoustic reconstruction of ritual and public spaces of ancient Greece. Acta Acustica united with Acustica 87, 5 (2001) 604–609. [Google Scholar]
  29. S.L. Vassilantonopoulos, J.N. Mourjopoulos: A study of ancient Greek and Roman theatre acoustics. Acta Acustica united with Acustica 89, 1 (2003) 123–136. [Google Scholar]
  30. K. Chourmouziadou, J. Kang: Acoustic evolution of ancient Greek and Roman theatres. Applied Acoustics 69 (2008) 514–529. [CrossRef] [Google Scholar]
  31. S. Psarras, P. Hatziantoniou, M. Kountouras, N.-A. Tatlas, J. Mourjopoulos, D. Skarlatos: Measurement and analysis of the Epidaurus ancient theatre acoustics. Acta Acustica united with Acustica 99 (2013) 30–39. [CrossRef] [Google Scholar]
  32. R.R. Torres, U.P. Svensson, M. Kleiner: Edge diffraction in room acoustics computations, in: Proc. of EAA Symposium on Architectural Acoustics, Madrid. 2000. [Google Scholar]
  33. K. Kaleris, G. Moiragias, G. Kamaris, J. Mourjopoulos: Wave-based acoustic modeling of the Epidaurus theatre, in: Proceedings of Euronoise 2018 Conference, Hellenic Institute of Acoustics, Crete, Greece, 2018, pp. 2161–2168. [Google Scholar]
  34. B.-I. Dalenbäck: Automatic edge diffusion, in: Manual for CATT-Acoustic Version 7.2, Section 2.5. 1999. [Google Scholar]
  35. Olive Tree Lab, PE: Mediterranean Acoustics Research and Development. https://www.mediterraneanacoustics.com/olive-tree-lab-suite.html (ac. 08.05.22). [Google Scholar]
  36. T. Lokki, A. Southern, S. Siltanen, L. Savioja: Acoustics of Epidaurus – studies with room acoustics modelling methods. Acta Acustica United With Acustica 99 (2013) 40–47. [CrossRef] [Google Scholar]
  37. U.P. Svensson: Edge Diffraction Matlab Toolbox (EDtoolbox). https://github.com/upsvensson/Edge-diffraction. 2022. [Google Scholar]
  38. P. Menounou, P. Nikolaou: Analytical model for predicting edge diffraction in the time domain. Journal of the Acoustical Society of America 142, 6 (2017) 3580. [CrossRef] [PubMed] [Google Scholar]
  39. A. Erraji, J. Stienen, M. Vorländer: The image edge model. Acta Acustica 5, 1 (2021) 17. [CrossRef] [EDP Sciences] [Google Scholar]
  40. B.-I. Dalenbäck: Whitepaper regarding diffraction v8, CATT-Acoustic, January 9 2023, https://www.catt.se/. [Google Scholar]
  41. Odeon Room Acoustics Software, Odeon A/S, accessed 18.04.2023, https://odeon.dk/ . [Google Scholar]
  42. V. Papathanasopoulos: The Acoustics of Greek Theatre. PhD Dissertation, NTUA, Athens, 1947. [Google Scholar]
  43. M.A. Biotand, I. Tolstoy: Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction. Journal of the Acoustical Society of America 29 (1957) 381–391. [CrossRef] [Google Scholar]
  44. C.S. Clayand, W.A. Kinney: Numerical computations of time-domain diffractions from wedges and reflections from facets. Journal of the Acoustical Society of America 83 (1988) 2126–2133. [CrossRef] [Google Scholar]
  45. A.M.J. Davis: The complete extension of the Biot-Tolstoy solution to the density contrast wedge with sample calculations. Journal of the Acoustical Society of America 101 (1997) 1821–1835. [CrossRef] [Google Scholar]
  46. N. Tsingos, T. Funkhouser, A. Ngan, I. Carlbom: : Modeling acoustics in virtual environments using the uniform theory of diffraction, in: Proc. Conf. on Comp. Graphics and Interactive Techniques, Sage, NY, 2001, pp. 545–552. [Google Scholar]
  47. V. Pulkki, T. Lokki, L. Savioja: Implementation and visualization of edge diffraction with image-source method, in The 112nd Audio Engineering Society (AES) Convention. 2002. [Google Scholar]
  48. T. Lokki, V. Pulkki: Measurement and theoretical validation of diffraction from a single edge, in: Proc. Int. Congress on Acoustics. 2004, pp. 929–932. [Google Scholar]
  49. L. Savioja, U.P. Svensson: Overview of geometrical room acoustic modeling techniques. Journal of the Acoustical Society of America 138 (2015) 708–730. [Google Scholar]
  50. P. Menounou, S. Bougiesis: Theoretical investigation of diffraction phenomena in the ancient theatre of Epidaurus, in: The Acoustics of Ancient Theatres 2nd Symposium, Verona. 2022. [Google Scholar]
  51. P. Menounou, et al.: A Virtual Source Method for the prediction of the sound field around rigid obstacles, in: EuroNoise 2018. 2018. [Google Scholar]
  52. F. Canac: L’acoustique des Théâtre’s antiques. CNRS, Paris, 1967. [Google Scholar]
  53. K. Kaleris, G. Moiragias, P. Hatziantoniou, J. Mourjopoulos: Time-frequency diffraction acoustic modeling of the Epidaurus theatre, in: The Acoustics of Ancient Theatres 2nd Symposium, Verona. 2022. [Google Scholar]
  54. M. Kleiner, B.-I. Dalenbäck, P. Svensson: Auralization-an overview. Journal of the Audio Engineering Society 41 (1993) 861–875. [Google Scholar]
  55. R.R. Torres, U.P. Svensson, M. Kleiner: Computation of edge diffraction for more accurate room acoustics auralization. Journal of the Acoustical Society of America 109, 2 (2001) 600–610. [CrossRef] [PubMed] [Google Scholar]
  56. T. Lokki, P. Svensson, L. Savioja: An efficient auralization of edge diffraction, in: 21st AES Int. Conf., 2002. [Google Scholar]
  57. M. Barron: Auditorium acoustics and architectural design. Spon Press, New York, 2010. [Google Scholar]
  58. J. Eargle: The microphone book: from mono to stereo to surround – a guide to microphone design and application. 2nd ed., Focal Press, 2012. [CrossRef] [Google Scholar]
  59. MATLAB: version R2022a. The MathWorks Inc., Natick, Massachusetts, 2022. [Google Scholar]
  60. Vitruvius: The ten books on architecture, translated by Morgan MH. Harvard University Press, London/Cambridge, MA, 1914. [Google Scholar]
  61. S.P. Psarras, M. Kountouras: Acoustic and environmental parameter measurements in Epidaurus Ancient Theatre, in: The Acoustics of Ancient Theatres Conf., Patras, Greece, 2011. [Google Scholar]
  62. G. Moiragias: Epidaurus Simulations (version 1.0) [data]. GitHub, 2023. https://github.com/YorgosMoiragias/epidaurus_simulations. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.