Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 37
Number of page(s) 15
Section Audio Signal Processing and Transducers
DOI https://doi.org/10.1051/aacus/2023029
Published online 18 July 2023
  1. ISO 362-1: Measurement of noise emitted by accelerating road vehicles – engineering method – part 1: M and N categories. 2015. Accessed 2018–10-12T12:52:21Z. [Google Scholar]
  2. UN, ECE: Addendum 50: Regulation No. 51 Revision 3. Uniform provisions concerning the approval of motor vehicles having at least four wheels with regard to their sound emissions, 2016, p. 69. [Google Scholar]
  3. ISO 362–3: Measurement of noise emitted by accelerating road vehicles — engineering method — Part 3: Indoor testing M and N categories. Technical Report. 2016. [Google Scholar]
  4. K. Janssens, F. Bianciardi, L. Britte, P. Van de Ponseele: Pass-by noise engineering: A review of different transfer path analysis techniques, ISMA. 2014, p. 18. [Google Scholar]
  5. P. Corbeels: Using component test bench measurements to predict pass-by noise contributions for trucks virtually, in: Aachen Acoustics Colloquium – AAC, 27–29 November 2017, Aachen. 2017. [Google Scholar]
  6. T. Asakura, T. Miyajima, S. Sakamoto: Prediction method for sound from passing vehicle transmitted through building façade. Applied Acoustics 74 (2013) 758–769. [CrossRef] [Google Scholar]
  7. M. Hornikx, R. Waxler, J. Forssén: The extended fourier pseudospectral time-domain method for atmospheric sound propagation. Journal of the Acoustical Society of America 128 (2010) 1632–1646. [CrossRef] [PubMed] [Google Scholar]
  8. F. Georgiou, M. Hornikx, A. Kohlrausch: Auralization of a car pass-by using impulse responses computed with a wave-based method. Acta Acustica united with Acustica 105 (2019) 381–391. [CrossRef] [Google Scholar]
  9. D. Berckmans: Tools for the synthesis of traffic noise sources (technieken voor de synthese van verkeersgeluid). Ph.D. thesis, Katholieke Universiteit Leuven, 2010. [Google Scholar]
  10. S. Guidati, R. Sottek, K. Genuit: Simulated pass-by in small rooms using noise synthesis technology. 2004. [Google Scholar]
  11. E. Bongini, S. Molla, P.E. Gautier, D. Habault, P.O. Mattéi, F. Poisson: Synthesis of noise of operating vehicles: Development within SILENCE of a tool with listening features. In: B. Schulte-Werning, D. Thompson, P.E. Gautier, C. Hanson, B. Hemsworth, J. Nelson, T. Maeda, P. Vos (Eds.), Noise and vibration mitigation for rail transportation systems, Vol. 99, Springer, Berlin, Heidelberg, 2008, pp. 320–326. [CrossRef] [Google Scholar]
  12. J. Forssén, T. Kaczmarek: Auralization of traffic noise within the LISTEN project – preliminary results for passenger car pass-by, in: J. Kang (Ed.), Euronoise 2009: Action on noise in Europe, Institute of Acoustics, Edinburgh. 2009, p. 11. [Google Scholar]
  13. A. Fiebig, R. Sottek, E. Kuczmarski: Auralization of road traffic noise and its value for environmental noise assessment, AIA-DAGA, Merano. 2013. [Google Scholar]
  14. J. Maillard, J. Jagla: Auralization of non-stationary traffic noise using sample based synthesis – comparison with pass-by recordings, in: Proceedings of the AIA-DAGA Conference on Acoustics, Merano, Italy. 2013, p. 13. [Google Scholar]
  15. E. Salomons, D. van Maercke, J. Defrance, F. de Roo: The harmonoise sound propagation model. Acta Acustica united with Acustica 97 (2011) 62–74. [CrossRef] [Google Scholar]
  16. R. Pieren, T. Butler, K. Heutschi: Auralization of accelerating passenger cars using spectral modeling synthesis. Applied Sciences 6 (2015) 5. [CrossRef] [Google Scholar]
  17. F. Yang: Traffic flow auralisation based on single vehicle pass-by noise synthesis, in: Proceedings of the 23rd International Congress on Acoustics, 9–13 September 2019, Aachen. 2019. [Google Scholar]
  18. M. Alkmim, F. Bianciardi, G. Vandernoot, L. De Ryck, J. Cuenca, K. Janssens: Pass-by noise synthesis from transfer path analysis using IIR filters, in Vibration Engineering for a Sustainable Future, Springer. 2019. [Google Scholar]
  19. M. Alkmim, G. Vandernoot, L. De Ryck, J. Cuenca, K. Janssens: Virtual pass-by noise sound synthesis from transfer path analysis data, in: Audio Engineering Society (AES) International Conference on Automotive Audio, 8–10 June 2022, Detroit. 2022, p. 7. [Google Scholar]
  20. K. Janssens, P. Aarnoutse, P. Gajdatsy, L. Britte, F. Deblauwe, H. Van der Auweraer: Time-domain source contribution analysis method for in-room pass-by noise, in: SAE Technical Paper 2011-01-1609. 2011. [Google Scholar]
  21. P. Van de Ponseele, K. Janssens, L. De Ryck: Source – transfer – receiver modeling approaches – a historical review of methods, in: INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 19–22 August 2012, New York. 2012, p. 11. [Google Scholar]
  22. J.M. Jot, V. Larcher, O. Warusfel: Digital signal processing issues in the context of binaural and transaural stereophony, in: Audio Engineering Society Convention 98, Audio Engineering Society, 1995. [Google Scholar]
  23. A. Härmä, M. Karjalainen, L. Savioja, V. Välimäki, U.K. Laine, J. Huopaniemi: Frequency-warped signal processing for audio applications. Audio Engineering Society Convention 108, Audio Engineering Society, 2000. [Google Scholar]
  24. A. Makur, S. Mitra: Warped discrete-Fourier transform: Theory and applications. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 48 (2001) 1086–1093. [CrossRef] [Google Scholar]
  25. B. Friedlander, B. Porat: The modified Yule-Walker method of ARMA spectral estimation. IEEE Transactions on Aerospace and Electronic Systems AES-20 (1984) 158–173. [CrossRef] [Google Scholar]
  26. V.P. Valimaki: Discrete-time modeling of acoustic tubes using fractional delay filters, Ph.D. thesis, 1998. [Google Scholar]
  27. J.O. Smith III: Digital audio resampling, https://ccrma.stanford.edu/~jos/resample/, Center for Computer Research in Music and Acoustics (CCRMA), Stanford University. 2020/9/17 (accessed 2023/7/6). [Google Scholar]
  28. J. Blauert: Spatial hearing: the psychophysics of human sound localization, MIT Press, 1997. [Google Scholar]
  29. L. McCormack, A. Politis: SPARTA & COMPASS: Real-time implementations of linear and parametric spatial audio reproduction and processing methods, in: 2019 AES International Conference on Immersive and Interactive Audio, 27–29 March 2019, York. Audio Engineering Society, 2019. [Google Scholar]
  30. T. Carpentier, M. Noisternig, O. Warusfel: Twenty years of IRCAM spat: Looking back, looking forward, 41st International Computer Music Conference (ICMC), Sep 2015, Denton, TX, United States. 2015, pp. 270–277. [Google Scholar]
  31. M. Kronlachner, F. Zotter: Spatial transformations for the alteration of ambisonic recordings, in: Proceedings of the 2nd International Conference on Spatial Audio, 21–23 February 2014, Erlangen. 2014, p. 73. [Google Scholar]
  32. B. Rafaely: Fundamentals of Spherical Array Processing. Springer Topics in Signal Processing, Springer-Verlag, Berlin Heidelberg. 2015. [CrossRef] [Google Scholar]
  33. J. Daniel, S. Moreau, R. Nicol: Further investigations of high-order ambisonics and wavefield synthesis for holophonic sound imaging, in: Audio Engineering Society Convention 114. Audio Engineering Society, Mar 1, 2003. [Google Scholar]
  34. C. Schorkhuber, M. Zaunschirm, R. Holdrich: Binaural rendering of ambisonic signals via magnitude least squares. Fortschritter der Akustik (DAGA), Munich. 2018. [Google Scholar]
  35. A. Politis: Microphone array processing for parametric spatial audio techniques. Ph.D. thesis, Aalto University. 2016. [Google Scholar]
  36. F. Zotter, M. Frank: Ambisonics: a practical 3D audio theory for recording, studio production, sound reinforcement, and virtual reality, Springer Nature, 2019. [CrossRef] [Google Scholar]
  37. Steinberg: Virtual studio technology (VST). 2021. https://new.steinberg.net/vst-instruments/, accessed 2021-08-17. [Google Scholar]
  38. IEM: IEM Audioplugins/IEMPluginSuite, GitLab. 2022. https://git.iem.at/audioplugins/IEMPluginSuite, accessed 2022-08-12T14:53:54Z. [Google Scholar]
  39. Epic Games: Unreal engine, 2021. https://www.unrealengine.com, accessed 2021-08-17. [Google Scholar]
  40. D. Deboy, F. Zotter: Acoustic center and orientation analysis of sound-radiation recorded with a surrounding spherical microphone array, in: Proceedings of the 2nd International Symposium on Ambisonics and Spherical Acoustics, Vol. 21, 6–7 May 2010, Paris. 2010. [Google Scholar]
  41. B. Bernschütz: A spherical far field HRIR/HRTF compilation of the neumann KU100, DAGA Fortschritte der Akustik, Meran, Italy. 2013. [Google Scholar]
  42. M. Alkmim, G. Vandernoot, J. Cuenca, K. Janssens, W. Desmet, L. De Ryck: Audio samples: Real-time sound synthesis of pass-by noise: comparison of spherical harmonics and time-varying filters, KU Leuven RDR, 2023. [Google Scholar]
  43. M. Alkmim: Online listening test. 2021. https://mansour.alk.gitlab.io/pbnv2jurytest/, accessed 2021-07-08T13:37:08Z. [Google Scholar]
  44. E. Parizet, N. Hamzaoui, G. Sabatie: Comparison of some listening test methods : A case study. Acta Acustica united with Acustica 19 (2005) 356–364. [Google Scholar]
  45. C. Puhle, V. Becker, A. Jahnke, F. Knappe: Estimation of partial sound sources with non-spherical directivity for analysis of pass-by noise in hemi-anechoic indoor test benches, 9–10 June 2022, Berlin. 2022. [Google Scholar]
  46. M. Alkmim, J. Cuenca, L. De Ryck, N. Kournoutos, A. Papaioannou, J. Cheer, K. Janssens, W. Desmet: A semi-circular microphone array configuration for indoor pass-by noise sound synthesis, in: 49th International Congress and Exposition on Noise Control Engineering (Inter. Noise), 23–26 August 2020, Seoul. 2020, p. 7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.