Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 38
Number of page(s) 11
Section Ultrasonics
DOI https://doi.org/10.1051/aacus/2023030
Published online 21 July 2023
  1. A. Mal, L. Knopoff: Transmission of Rayleigh waves past a step change in elevation. Bulletin of the Seismological Society of America 55, 2 (1965) 319–334. [CrossRef] [Google Scholar]
  2. L. Knopoff: Elastic wave propagation in a wedge. In: Miklowitz J, Ed. Wave propagation in solids, Los Angeles: ASME, 1969, 3–43. [Google Scholar]
  3. A. Mal, L. Knopoff: Transmission of Rayleigh waves at a corner. Bulletin of the Seismological Society of America 56, 2 (1966) 455–466. [CrossRef] [Google Scholar]
  4. L. Knopoff, A.F. Gangi: Transmission and reflection of Rayleigh waves by wedges. Geophysics 25, 6 (1960) 1203–1214. [CrossRef] [Google Scholar]
  5. A.F. Gangi: Experimental determination of p wave/Rayleigh wave conversion coefficients at a stress-free wedge. Journal of Geophysical Research 72, 22 (1967) 5685–5692. [CrossRef] [Google Scholar]
  6. F.-C. Lin, M.P. Moschetti, M.H. Ritzwoller: Surface wave tomography of the western united states from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International 173, 1 (2008) 281–298. [CrossRef] [Google Scholar]
  7. S.K. Chakrapani, L.J. Bond, R. Edwards: Rayleigh wave nondestructive evaluation for defect detection and material characterization. ASM Handbook, Nondestructive Evaluation of Materials 17 (2018) 266–282. [Google Scholar]
  8. B. Auld: Rayleigh wave propagation. In: Rayleigh-wave theory and application. Springer, 1985, 12–28. [CrossRef] [Google Scholar]
  9. H. Bateman: Rayleigh waves. Proceedings of the National Academy of Sciences 24, 8 (1938) 315–320. [CrossRef] [PubMed] [Google Scholar]
  10. I. Viktorov: Types of acoustic surface waves in solids/review. Akusticheskii Zhurnal 25 (1979) 1–17. [Google Scholar]
  11. B. Vu, V. Kinra: Diffraction of Rayleigh waves in a half-space. I. Normal edge crack. The Journal of the Acoustical Society of America 77, 4 (1985) 1425–1430. [CrossRef] [Google Scholar]
  12. C. Wang, A. Sun, X. Yang, B.-F. Ju, Y. Pan: Numerical simulation of the interaction of laser-generated Rayleigh waves with subsurface cracks. Applied Physics A 124, 9 (2018) 1–10. [CrossRef] [Google Scholar]
  13. H. Wong: Effect of surface topography on the diffraction of p, sv, and Rayleigh waves. Bulletin of the Seismological Society of America 72, 4 (1982) 1167–1183. [Google Scholar]
  14. B.V. Budaev, D.B. Bogy: Rayleigh wave scattering by a wedge. Wave Motion 22, 3 (1995) 239–257. [CrossRef] [Google Scholar]
  15. S. Chakrapani, D. Barnard, V. Dayal: Review of ultrasonic testing for nde of composite wind turbine blades. In: AIP Conference Proceedings, Vol. 2102, AIP Publishing LLC, 2019, 100003. [CrossRef] [Google Scholar]
  16. A. Gautesen: Scattering of a Rayleigh wave by an elastic wedge whose angle is less than 180. Wave Motion 36, 4 (2002) 417–424. [CrossRef] [Google Scholar]
  17. A. Gautesen: Scattering of a Rayleigh wave by an elastic wedge whose angle is greater than 180 degrees. Journal of Applied Mechanics 68, 3 (2001) 476–479. [CrossRef] [Google Scholar]
  18. A. Gautesen: Scattering of a Rayleigh wave by an elastic three-quarter space. Wave Motion 35, 2 (2002) 99–106. [CrossRef] [Google Scholar]
  19. A. Gautesen: Scattering of a Rayleigh wave by an elastic quarter space-revisited. Wave Motion 35, 1 (2002) 91–98. [CrossRef] [Google Scholar]
  20. A. Gautesen: Scattering of a Rayleigh wave by an elastic wedge. Wave Motion 9, 1 (1987) 51–59. [CrossRef] [Google Scholar]
  21. K. Fujii: Rayleigh-wave scattering at various wedge corners: investigation in the wider range of wedge angles. Bulletin of the Seismological Society of America 84, 6 (1994) 1916–1924. [CrossRef] [Google Scholar]
  22. K. Fujii, S. Takeuchi, Y. Okano, M. Nakano: Rayleigh wave scattering at various wedge corners. Bulletin of the Seismological Society of America 74, 1 (1984) 41–60. [CrossRef] [Google Scholar]
  23. F.C. Karal Jr, S.N. Karp: The elastic-field behavior in the neighborhood of a crack of arbitrary angle. Communications on Pure and Applied Mathematics 15, 4 (1962) 413–421. [CrossRef] [Google Scholar]
  24. C. Bommaraju, R. Marklein: Optimally accurate second-order time-domain finite-difference scheme for acoustic, electromagnetic, and elastodynamic wave modeling: one-dimensional case. In: Thompson DO, Chimenti D, Eds. IEEE Antennas and Propagation Society Symposium, 2004, Monterey, CA, USA, Vol. 2, 2004, 1499–1502. https://doi.org/10.1109/APS.2004.1330473. [Google Scholar]
  25. R. Marklein: The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields. IEEE Press and John Wiley & Sons, New York, NY, USA, 2002. [Google Scholar]
  26. D. Botteldooren: Finite-difference time-domain simulation of low-frequency room acoustic problems. The Journal of the Acoustical Society of America 98, 6 (1995) 3302–3308. [CrossRef] [Google Scholar]
  27. S. Wang: Finite-difference time-domain approach to underwater acoustic scattering problems. The Journal of the Acoustical Society of America 99, 4 (1996) 1924–1931. [CrossRef] [Google Scholar]
  28. L.L. Thompson: A review of finite-element methods for time-harmonic acoustics. The Journal of the Acoustical Society of America 119, 3 (2006) 1315–1330. [Google Scholar]
  29. J. Virieux, H. Calandra, R.-É. Plessix: A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging. Geophysical Prospecting (Modelling Methods for Geophysical Imaging: Trends and Perspectives) 59 (2011) 794–813. [Google Scholar]
  30. B.A. Auld: Acoustic fields and waves in solids. RIPOL classic Publishing Group, 1973. [Google Scholar]
  31. F.J. Sánchez-Sesma, M. Campillo: Topographic effects for incident P, SV and Rayleigh waves. Tectonophysics 218, 1–3 (1993) 113–125. [CrossRef] [Google Scholar]
  32. W. Hassan, W. Veronesi: Finite element analysis of Rayleigh wave interaction with finite-size, surface-breaking cracks. Ultrasonics 41, 1 (2003) 41–52. [CrossRef] [PubMed] [Google Scholar]
  33. M. Hirao, H. Fukuoka, Y. Miura: Scattering of Rayleigh surface waves by edge cracks: Numerical simulation and experiment. The Journal of the Acoustical Society of America 72, 2 (1982) 602–606. [CrossRef] [Google Scholar]
  34. S.K. Chakrapani: Numerical study of Rayleigh wave propagation along a horizontal semi-infinite crack buried in half-space. The Journal of the Acoustical Society of America 141, 1 (2017) 137–146. [CrossRef] [PubMed] [Google Scholar]
  35. N. Pan, Z. Su, L. Ye, L.-M. Zhou, Y. Lu: A quantitative identification approach for delamination in laminated composite beams using Digital Damage Fingerprints (DDFs). Composite structures 75, 1–4 (2006) 559–570. [CrossRef] [Google Scholar]
  36. F. Song, G. Huang, K. Hudson: Guided wave propagation in honeycomb sandwich structures using a piezoelectric actuator/sensor system. Smart Materials and Structures 18, 12 (2009). [Google Scholar]
  37. C. Ramadas, K. Balasubramaniam, M. Joshi, C. Krishnamurthy: Interaction of the primary anti-symmetric Lamb mode (ao) with symmetric delaminations: numerical and experimental studies. Smart Materials and Structures 18, 8 (2009) 085011. [CrossRef] [Google Scholar]
  38. A. Zerwer, G. Cascante, J. Hutchinson: Parameter estimation in finite element simulations of Rayleigh waves. Journal of Geotechnical and Geoenvironmental Engineering 128, 3 (2002) 250–261. [CrossRef] [Google Scholar]
  39. R. Edwards, B. Dutton, M. Rosli, A. Clough: Non-contact ultrasonic characterization of angled surface defects. In: AIP Conference Proceedings, Vol. 1335. American Institute of Physics, 2011, 257–264. [CrossRef] [Google Scholar]
  40. X. Jian, S. Dixon, N. Guo, R. Edwards: Rayleigh wave interaction with surface-breaking cracks. Journal of Applied physics 101, 6 (2007) 064906. [CrossRef] [Google Scholar]
  41. T. Ulrich: Envelope calculation from the Hilbert Transform. Technical Report, Los Alamos National Laboratory, 2006. [Google Scholar]
  42. L.W. Schmerr: Fundamentals of ultrasonic nondestructive evaluation, Vol. 122. Springer, 2016. [CrossRef] [Google Scholar]
  43. N. Saffari, L. Bond: Body to Rayleigh wave mode-conversion at steps and slots. Journal of Nondestructive Evaluation 6, 1 (1987) 1–22. [CrossRef] [Google Scholar]
  44. C. Chang, H. Tuan: On the surface-to-bulk mode conversion of Rayleigh waves. IEEE Transactions on Microwave Theory and Techniques 21 (1973) 558–560. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.