Open Access
Issue
Acta Acust.
Volume 7, 2023
Article Number 60
Number of page(s) 9
Section Hearing, Audiology and Psychoacoustics
DOI https://doi.org/10.1051/aacus/2023061
Published online 17 November 2023
  1. N.S. Yeowart, M.J. Evans: Thresholds of audibility for very low-frequency pure tones, Journal of the Acoustical Society of America 55 (1974) 814–818. [CrossRef] [PubMed] [Google Scholar]
  2. H. Møller, C.S. Pedersen: Hearing at Low and Infrasonic Frequencies, Noise & Health 6 (2004) 37–57. [PubMed] [Google Scholar]
  3. R. Kühler, T. Fedtke, J. Hensel: Infrasonic and low-frequency insert earphone hearing threshold, Journal of the Acoustical Society of America 137 (2015) EL347–EL353. [CrossRef] [PubMed] [Google Scholar]
  4. C. Jurado, M. Larrea, H. Patel, T. Marquardt: Dependency of threshold and loudness on sound duration at low and infrasonic frequencies, Journal of the Acoustical Society of America 148 (2020) 1030–1038. [CrossRef] [PubMed] [Google Scholar]
  5. B. Friedrich, H. Joost, T. Fedtke, J.L. Verhey: Spectral integration of infrasound at threshold. Hearing at Low and Infrasonic Frequencies, Journal of the Acoustical Society of America 147 (2020) 259–263. [Google Scholar]
  6. H. Joost, B. Friedrich, J.L. Verhey, T. Fedtke: Is infrasound perceived by the auditory system through distortions? Acta Acustica united with Acustica 5 (2021) 1–10. [Google Scholar]
  7. E. Burke, J. Hensel, T. Fedtke, S. Uppenkamp, C. Koch: Detection thresholds for combined infrasound and audio-frequency stimuli, Acta Acustica united with Acustica 105 (2019) 1173–1182. [CrossRef] [Google Scholar]
  8. H. Fastl, E. Zwicker: Psychoacoustics. Facts and Models, Springer, Berlin, Heidelberg, 2007. [CrossRef] [Google Scholar]
  9. T. Marquardt, C. Jurado: Amplitude modulation may be confused with infrasound, Acta Acustica united with Acustica 104 (2018) 825–829. [CrossRef] [Google Scholar]
  10. ISO 389–9:2009: Acoustics – Reference zero for the calibration of audiometric equipment – Part 9: Preferred test conditions for the determination of reference hearing threshold levels. International Organization for Standardization, Geneva, 2009. [Google Scholar]
  11. H. Joost, B. Friedrich, J.L. Verhey, T. Fedtke: How to present pure-tone infrasound to the ear? in Proceedings of the 23rd International Congress on Acoustics (ICA 2019), Aachen, Germany, 2019. [Google Scholar]
  12. H. Joost, M. Bug, B. Friedrich, J.L. Verhey, T. Fedtke: Schutz des Gehörs bei Infraschall-Hörversuchen, in Proceedings of the 47. Jahrestagung für Akustik (DAGA 2021), Wien, Austria, 2019. [Google Scholar]
  13. H. Levitt: Transformed up-down methods in psychoacoustics, Journal of the Acoustical Society of America 49 (1971) 467–477. [CrossRef] [Google Scholar]
  14. J.J. Zwislocki, E.M. Relkin: On a psychophysical transformed-rule up and down method converging on a 75% level of correct responses, Proceedings of the National Academy of Sciences of the United States of America 98 (2001) 4811–4814. [CrossRef] [PubMed] [Google Scholar]
  15. E. Zwicker, W. Kaiser: Der Verlauf der Modulationsschwellen in der Hörfläche, Acta Acustica united with Acustica 2, Supplement 4 (1952) 239–246. [Google Scholar]
  16. A. Kohlrausch, R. Fassel, T. Dau: The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers, Journal of the Acoustical Society of America 108 (2000) 723–734. [CrossRef] [PubMed] [Google Scholar]
  17. B.C.J. Moore, B.R. Glasberg: Temporal modulation transfer functions obtained using sinusoidal carriers with normally hearing and hearing-impaired listeners, Journal of the Acoustical Society of America 110 (2001) 1067–1073. [CrossRef] [PubMed] [Google Scholar]
  18. R.E. Millman, S.P. Bacon: The influence of spread of excitation on the detection of amplitude modulation imposed on sinusoidal carriers at high levels, Journal of the Acoustical Society of America 123 (2008) 1008–1016. [CrossRef] [PubMed] [Google Scholar]
  19. S.J. Heise, M. Mauermann, J.L. Verhey: Threshold fine structure affects amplitude modulation perception, Journal of the Acoustical Society of America 125 (2009) EL33–EL38. [CrossRef] [PubMed] [Google Scholar]
  20. J. Hall: Linear deming regression. MATLAB Central File Exchange. Available at https://www.mathworks.com/matlabcentral/fileexchange/33484-linear-deming-regression. Version 1.2.0.0, retrieved July 15, 2022. [Google Scholar]
  21. C. Jurado, C.S. Pedersen, B.C.J. Moore: Psychophysical tuning curves for frequencies below 100 Hz, Journal of the Acoustical Society of America 129 (2011) 3166–3180. [CrossRef] [PubMed] [Google Scholar]
  22. C. Jurado, B.C.J. Moore: Frequency selectivity for frequencies below 100 Hz: comparisons with mid-frequencies, Journal of the Acoustical Society of America 128 (2010) 3585–3596. [CrossRef] [PubMed] [Google Scholar]
  23. W. Jesteadt, C.C. Wier, D.M. Green: Intensity discrimination as a function of frequency and sensation level, Journal of the Acoustical Society of America 61 (1977) 169–177. [CrossRef] [PubMed] [Google Scholar]
  24. B. Friedrich, H. Joost, T. Fedtke, J.L. Verhey; Ein Modell zur Zeitintegration akustischer Reize im Infraschallbereich, in Proceedings of the 47. Jahrestagung für Akustik (DAGA 2021), Wien, Austria, 2021. [Google Scholar]
  25. B. Friedrich, H. Joost, T. Fedtke, J.L. Verhey: Daten zur Zeitintegration akustischer Reize im Infraschallbereich, in Proceedings of the 48. Jahrestagung für Akustik (DAGA 2022), Stuttgart, Germany, 2022. [Google Scholar]
  26. G. Scholz, A. Hirschfelder, T. Marquardt, J. Hensel, D. Mrowinski: Low-frequency modulation of the 2f1–f2 distortion product otoacoustic emissions in the human ear, Hearing Research 130 (1999) 189–196. [CrossRef] [PubMed] [Google Scholar]
  27. L. Bian, N.M. Scherrer: Low-frequency modulation of distortion product otoacoustic emissions in humans, Journal of the Acoustical Society of America 122 (2007) 1681–1692. [CrossRef] [PubMed] [Google Scholar]
  28. J.L. Verhey, S.D. Ewert, T. Dau: Modulation masking produced by complex tone modulators, Journal of the Acoustical Society of America 114 (2003) 2135–2146. [CrossRef] [PubMed] [Google Scholar]
  29. S.D. Ewert, J.L. Verhey, T. Dau: Spectro-temporal processing in the envelope-frequency domain, Journal of the Acoustical Society of America 112 (2002) 2921–2931. [CrossRef] [PubMed] [Google Scholar]
  30. B. Friedrich, H. Joost, T. Fedtke, J.L. Verhey: Einfluss des Infraschalls auf die Wahrnehmung von Amplitudenmodulationen im Hörfrequenzbereich, in Proceedings of the 49. Jahrestagung für Akustik (DAGA 2023), Hamburg, Germany, 2023. [Google Scholar]
  31. J. Schlittenlacher, J.X. Lim, J. Lawson, B.C.J. Moore: Modulation masking produced by a low-frequency pure tone, Hearing Research 424 (2022) 108596. [CrossRef] [PubMed] [Google Scholar]
  32. G.H. Wakefield, N.H. Viemeister: Temporal interactions between pure tones and amplitude-modulated noise, Journal of the Acoustical Society of America 77 (1985) 1535–1542. [CrossRef] [PubMed] [Google Scholar]
  33. W.A. Yost, S. Sheft, J. Opie: Modulation interference in detection and discrimination of amplitude modulation, Journal of the Acoustical Society of America 86 (1989) 2138–2147. [CrossRef] [PubMed] [Google Scholar]
  34. W.A. Yost, S. Sheft: Modulation detection interference: across-frequency processing and auditory grouping, Hearing Research 79 (1994) 48–58. [CrossRef] [PubMed] [Google Scholar]
  35. B.C.J. Moore, M.J. Shailer: Modulation discrimination interference and auditory grouping, Philosophical Transactions of the Royal Society B 336 (1992) 339–346. [CrossRef] [PubMed] [Google Scholar]
  36. B.C.J. Moore, B.R. Glasberg, T. Gaunt, T. Child: Across-channel masking of changes in modulation depth for amplitude- and frequency-modulated signals, Quarterly Journal of Experimental Psychology 43A (1991) 327–347. [CrossRef] [PubMed] [Google Scholar]
  37. B. Zajamsek, K.L. Hansen, P.D. Nguyen, B. Lechat, G. Micic, P. Catcheside: Effect of infrasound on the detectability of amplitude-modulated tonal noise, Applied Acoustics 207 (2023) 109361. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.