Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 30
Number of page(s) 22
Section Environmental Noise
DOI https://doi.org/10.1051/aacus/2024030
Published online 28 August 2024
  1. L.G. Kurzweil: Ground-borne noise and vibration from underground rail systems, Journal of Sound and Vibration 66 (1979) 363–370. [CrossRef] [Google Scholar]
  2. F. Krüger: Noise and vibration from rail transport systems. Beekbergen, The Netherlands. 10. Excitation, propagation and prediction of groundborne noise and vibration, lecture Notes of the SAVOIR Course (1992). [Google Scholar]
  3. J.G. Walker, M.F.K. Chan: Human response to secondary radiation noise due to underground railway operations, Journal of Sound and Vibration 193 (1996) 49–63. [CrossRef] [Google Scholar]
  4. E.G. Vadillo, J. Herreros, J.G. Walker: Subjective reaction to secondary radiation sound from underground railways: field results, Journal of Sound and Vibration 193 (1996) 65–74. [CrossRef] [Google Scholar]
  5. N. Durlach: Auditory masking: need for improved conceptual structure, The Journal of the Acoustical Society of America 120 (2006) 1787–1790. [CrossRef] [PubMed] [Google Scholar]
  6. M. Pellegatti, S. Torresin, C. Visentin, F. Babich, N. Prodi: Indoor soundscape, speech perception, and cognition in classrooms: A systematic review on the effects of ventilation-related sounds on students, Building and Environment 236 (2023) 110194. [CrossRef] [Google Scholar]
  7. Y. Suhara, D. Ikefuji, M. Nakayama, T. Nishiura: A design of control signal in reducing discomfort of the dental treatment sound based on auditory masking, The Journal of the Acoustical Society of America 133 (2013) 3452. [CrossRef] [Google Scholar]
  8. Ö. Axelsson, M.E. Nilsson, B. Hellström, P. Lundén: A field experiment on the impact of sounds from a jet-and-basin fountain on soundscape quality in an urban park, Landscape and Urban Planning 123 (2014) 49–60. [CrossRef] [Google Scholar]
  9. B. De, S. Coensel, D.Botteldooren Vanwetswinkel: Effects of natural sounds on the reaction of road traffic noise, The Journal of the Acoustical Society of America 129 (2011) 148–153. [Google Scholar]
  10. Y. Hao, J. Kang, H. Wörtche: Assessment of the masking effects of birdsong on the road traffic noise environment, The Journal of the Acoustical Society of America 140 (2016) 978–987. [NASA ADS] [CrossRef] [Google Scholar]
  11. J.Y. Hong, Z.T. Ong, B. Lam, K. Ooi, W.S. Gan, J. Kang, J. Feng, S.T. Tan: Effects of adding natural sounds to urban noises on the perceived loudness of noise and soundscape quality, Science of the Total Environment 711 (2020) 134571. [CrossRef] [Google Scholar]
  12. T.M. Leung, C.K. Chau, S.K. Tang, J.M. Xu: Developing a multivariate model for predicting the noise annoyance responses due to combined water sound and road traffic noise exposure, Applied Acoustics 127 (2017) 284–291. [CrossRef] [Google Scholar]
  13. M.E. Nilsson, J. Alvarsson, M. Rådsten-Ekman, K. Bolin: Loudness of fountain and road traffic sounds in a city park, in: 16th International Congress on Sound and Vibration 2009, ICSV 2009, 5–9 July 2009, Krakow, Poland, 2009, pp. 1270–1276. [Google Scholar]
  14. M.E. Nilsson, J. Alvarsson, M. Rådsten-Ekman, K. Bolin: Auditory masking of wanted and unwanted sounds in a city park, Noise Control Engineering Journal 58 (2010) 524–531. [CrossRef] [Google Scholar]
  15. M. Rådsten-Ekman, Ö. Axelsson, M.E. Nilsson: Effects of sounds from water on reaction of acoustic environments dominated by road-traffic noise, Acta Acustica United with Acustica 99 (2013) 218–225. [CrossRef] [Google Scholar]
  16. J. You, P.J. Lee, J.Y. Jeon: Evaluating water sounds to improve the soundscape of urban areas affected by traffic noise, Noise Control Engineering Journal 58 (2010) 477–483. [CrossRef] [Google Scholar]
  17. L.A. Gille, C. Marquis-Favre, R. Weber: Aircraft noise annoyance modeling: consideration of noise sensitivity and of different annoying acoustical characteristics, Applied Acoustics 115 (2017) 139–149. [CrossRef] [Google Scholar]
  18. J.Y. Jeon, P.J. Lee, J. You, J. Kang: Acoustical characteristics of water sounds for soundscape enhancement in urban open spaces, The Journal of the Acoustical Society of America 131 (2012) 2101–2109. [CrossRef] [PubMed] [Google Scholar]
  19. M. Wen, H. Ma, C. Wang: Effect of spectral parameters on the elderly’s urgency perception of auditory warning signals, Applied Acoustics 195 (2022) 108850. [CrossRef] [Google Scholar]
  20. B. Eurich, T. Klenzner, M. Oehler: Impact of room acoustic parameters on speech and music perception among participants with cochlear implants, Hearing Research 377 (2019) 122–132. [CrossRef] [PubMed] [Google Scholar]
  21. A.L. Brown, J. Kang, T. Gjestland: Towards standardization in soundscape preference assessment, Applied Acoustics 72 (2011) 387–392. [CrossRef] [Google Scholar]
  22. V. Hongisto, D. Oliva, L. Rekola: Subjective and objective rating of spectrally different pseudorandom noises – implications for speech masking design, Journal of the Acoustical Society of America 137 (2015) 1344–1355. [NASA ADS] [CrossRef] [Google Scholar]
  23. A. Haapakangas, E. Kankkunen, V. Hongisto, P. Virjonen, D. Oliva, E. Keskinen: Effects of five speech masking sounds on performance and acoustic satisfaction. Implications for open-plan offices, Acta Acustica united with Acustica 97 (2011) 641–655. [CrossRef] [Google Scholar]
  24. J. Kang, F. Jiao, X. Xing, M. Zhang, H. Jin: Study on the acoustic environment in open plan offices, Urbanism and Architecture 72 (2010) 103–105. (in Chinese). [Google Scholar]
  25. W. Yang, H.J. Moon, M.J. Kim: Perceptual assessment of indoor water sounds over environmental noise through windows, Applied Acoustics 135 (2018) 60–69. [CrossRef] [Google Scholar]
  26. B. Lam, K. Lim, K. Ooi, Z. Ong, D. Shi, W. Gan: Anti-noise window: subjective perception of active noise reduction and effect of informational masking, Sustainable Cities and Society 97 (2023) 104763. [CrossRef] [Google Scholar]
  27. Q. Wang, W. Hongwei, W. Xiong, C. Yang: Developing multivariate models for predicting the level of dissatisfaction due to a specific secondary radiation noise masked with four specific water sounds, Applied Acoustics 200 (2022) 109082. [CrossRef] [Google Scholar]
  28. Q. Wang, W. Hongwei, C. Yang, G. Zhang: Developing multivariate models for predicting the levels of multi-dimensional critical reactions due to metro noise inside buildings, Applied Acoustics 200 (2022) 109083. [CrossRef] [Google Scholar]
  29. S.M. Taylor: A comparison of models to predict annoyance reactions to noise from mixed sources, Journal of Sound and Vibration 81 (1982) 123–138. [CrossRef] [Google Scholar]
  30. J.B. Ollerhead: Predicting public reaction to noise from mixed sources, in: INTER-NOISE and NOISE-CON Congress and Conference Proceedings, InterNoise78, San Francisco CA, Institute of Noise Control Engineering, 1978, pp. 579–584. [Google Scholar]
  31. C.A. Powell: Summation and inhibition model of annoyance response to multiple community noise sources, NASA Technical Paper 147, 1979. [Google Scholar]
  32. H.M.E. Miedema, H. Vos: Noise annoyance from stationary sources: Relationships with exposure metric day–evening–night level (DENL) and their confidence intervals, The Journal of the Acoustical Society of America 116 (2004) 334–343. [CrossRef] [PubMed] [Google Scholar]
  33. C.G. Rice, K. Izumi: Annoyance due to combinations of noises, in: Proceedings of International Acoustic Speech Conference, Institute of Acoustics, Liverpool, UK, 1984, pp. 287–294. [Google Scholar]
  34. C. Marquis-Favre, L.A. Gille, L. Breton: Combined road traffic, railway and aircraft noise sources: total noise annoyance model appraisal from field data, Applied Acoustics 180 (2021) 108127. [CrossRef] [Google Scholar]
  35. M. Pierrette, C. Marquis-Favre, J. Morel, L. Rioux, M. Vallet, S. Viollon, A. Moch: Noise annoyance from industrial and road traffic combined noises: a survey and a total annoyance model comparison, Journal of Environmental Psychology 32 (2012) 178–186. [CrossRef] [Google Scholar]
  36. J.Y. Jeon, J.K. Ryu, P.J. Lee: A quantification model of overall dissatisfaction with indoor noise environment in residential buildings, Applied Acoustics 71 (2010) 914–921. [CrossRef] [Google Scholar]
  37. S. Pujol: Le bruit environnemental en milieu urbain: exposition d’une population d’enfants et performances scolaires, Doctoral thesis, University of Franche-Comté, 2012. [Google Scholar]
  38. Q. Tenailleau, Multi-exposition en milieu urbain: approche multi-echelle del’exposition humaine au bruit et à la pollution atmosphérique, Doctoral thesis, University of Franche-Comté, 2014. [Google Scholar]
  39. P. Zahorik: Assessing auditory distance reaction using virtual acoustics, The Journal of the Acoustical Society of America 111 (2002) 1832–1846. [CrossRef] [PubMed] [Google Scholar]
  40. https://www.findsounds.com/. 22 November 2021. [Google Scholar]
  41. J. Zhang, K.A. Chen, R.Y. Zheng: Subjective evaluation and perceptual characteristics analysis of several typical ambient sounds, Applied Acoustics 40 (2021) 213–219 (in Chinese). [Google Scholar]
  42. R. Ye, K.A. Chen, L. Yan, X.H. Tian: Annoyance suppression and evaluation of aircraft cabin noise based on audio injection approach, Noise and Vibration Control 41 (2021) 141–148 (in Chinese). [Google Scholar]
  43. L. Galbrun, T.T. Ali: Acoustical and perceptual assessment of water sounds and their use over road traffic noise, The Journal of the Acoustical Society of America 133 (2013) 227–237. [CrossRef] [PubMed] [Google Scholar]
  44. S. Dewar: Water features in public places – human responses, Graduate Diploma in Landscape and Architecture thesis, Queensland University of Technology, Queensland, Australia, 1990, pp. 104–143. [Google Scholar]
  45. International Organization for Standardization (ISO): ISO/TS 12913–3: 2019, Acoustics soundscape – part 3: data analysis, International Organization for Standardization, Geneva, Switzerland, 2019. [Google Scholar]
  46. M. Yang, M. Masullo: Combining binaural psychoacoustic characteristics for emotional evaluations of acoustic environments, Applied Acoustics 210 (2023) 109433. [CrossRef] [Google Scholar]
  47. Y. Jin, H. Jin, J. Kang: Effects of sound types and sound levels on subjective environmental evaluations in different seasons, Building and Environment 183 (2020) 107215. [CrossRef] [Google Scholar]
  48. T.L. Nguyen, H.Q. Nguyen, T. Yano, T. Nishimura, T. Sato, T. Morihara, Y. Hashimoto: Comparison of models to predict annoyance from combined noise in Ho Chi Minh City and Hanoi, Applied Acoustics 73 (2012) 952–959. [CrossRef] [Google Scholar]
  49. S.C. Lee, J.Y. Hong, J.Y. Jeon: Effects of acoustic characteristics of combined construction noise on annoyance, Building and Environment 92 (2015) 657–667. [CrossRef] [Google Scholar]
  50. J.M. Fields, R.G. De Jong, T. Gjestland, I.H. Flindell, R.F.S. Job, S. Kurra, P. Lercher, M. Vallet, T. Yano, R. Guski, U. Felscher-Suhr, R. Schumer: Standardized general-purpose noise reaction questions for community noise surveys: research and a recommendation, Journal of Sound and Vibration 242 (2001) 641–679. [CrossRef] [Google Scholar]
  51. J. Kim, S. Lee, S. Kim, H. Song, J. Ryu: Quantitative study on the influence of non-acoustic factors on annoyance due to floor impact noise in apartments, Applied Acoustics 202 (2023) 109144. [CrossRef] [Google Scholar]
  52. ISO 15666: Acoustique: Évaluation de la gêne causée par le bruit au moyen d’enquêtes sociales et d’enquêtes socio-acoustiques. ISO/TS 15666 23, 2003. [Google Scholar]
  53. G.Q. Di, X.X. Zhou, X.W. Chen: Annoyance response to low frequency noise with tonal components: a case study on transformer noise, Applied Acoustics 91 (2015) 40–46. [CrossRef] [Google Scholar]
  54. J. Kaku, T. Kato, S. Kuwano, S. Namba: Predicting overall reaction to multiple noise sources, The Journal of the Acoustical Society of America 105 (1999) 1005. [CrossRef] [Google Scholar]
  55. J. Morel, C. Marquis-Favre, S. Viollon, M. Alayrac: Proposal for a simple model predicting the total annoyance due to industrial noises with low-frequency content mixed with industrial noises with a 100 Hz main component, in: 39th International Congress on Noise Control Engineering 2010 (INTER-NOISE 2010), 13–16 June 2010, Lisbon, Portugal, Sociedade Portuguesa de Acustica (SPA), 2010, pp. 1642-1649. [Google Scholar]
  56. T. Ronnebaum, B. Schulte-Fortkamp, R. Weber: Synergetic effects of noise from different sources: a literature study, in: INTER-NOISE and NOISE-CON Congress and Conference Proceedings, InterNoise96, Liverpool, England, Institute of Noise Control Engineering, 1996, pp. 2241–2246. [Google Scholar]
  57. T. Xi, Q. Wang, S. Wang, X. Lv: Adaptation to outdoor thermal environment of tourists and local people in winter in Harbin, AIP Conference Proceedings 2123 (2019) 020021. [CrossRef] [Google Scholar]
  58. K. Li, Y. Zhang, L. Zhao: Outdoor thermal comfort and activities in the urban residential community in a humid subtropical area of China, Energy and Buildings 133 (2016) 498–511. [CrossRef] [Google Scholar]
  59. E. Ohrström, L. Barregård, E. Andersson, A. Skånberg, H. Svensson, P. Angerheim: Annoyance due to single and combined sound exposure from railway and road traffic, The Journal of the Acoustical Society of America 122 (2007) 2642–2652. [CrossRef] [PubMed] [Google Scholar]
  60. G.R. Watts, R.J. Pheasant, K.V. Horoshenkov, L. Ragonesi: Measurement and subjective assessment of water generated sounds, Acta Acustica United with Acustica 95 (2009) 1032–1039. [CrossRef] [Google Scholar]
  61. Z. Bangjun, S. Lili, D. Guoqing: The influence of the visibility of the source on the subjective annoyance due to its noise, Applied Acoustics 64 (2003) 1205–1215. [CrossRef] [Google Scholar]
  62. K. Sun, B.D. Coensel, G.M.E. Sanchez, T.V. Renterghem, D. Botteldooren: Effect of interaction between attention focusing capability and visual factors on road traffic noise annoyance, Applied Acoustics 134 (2018) 16–24. [CrossRef] [Google Scholar]
  63. J. Morel, C. Marquis-Favre, L.A. Gille: Noise annoyance assessment of various urban road vehicle pass-by noises in isolation and combined with industrial noise: a laboratory study, Applied Acoustics 101 (2016) 47–57. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.