Issue
Acta Acust.
Volume 8, 2024
Topical Issue - Vibroacoustics
Article Number 78
Number of page(s) 17
DOI https://doi.org/10.1051/aacus/2024079
Published online 23 December 2024
  1. E. Carrera: An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates. Composite Structures 50, 2 (2000) 183–198. [CrossRef] [Google Scholar]
  2. D. Liu, L. Xu, X. Lu: An interlaminar bonding theory for delamination and nonrigid interface analysis. Journal of Reinforced Plastics and Composites 12, 11 (1993) 1198–1211. [CrossRef] [Google Scholar]
  3. D. Liu, L. Xu, X. Lu: Stress analysis of imperfect composite laminates with an interlaminar bonding theory. International Journal for Numerical Methods in Engineering 37, 16 (1994) 2819–2839. [CrossRef] [Google Scholar]
  4. Z.-Q. Cheng, A.K. Jemah, F.W. Williams: Theory for multilayered anisotropic plates with weakened interfaces. Journal of Applied Mechanics 63, 4 (1996) 1019–1026. [CrossRef] [Google Scholar]
  5. R. Schmidt: A general theory of geometrically imperfect laminated composite shells featuring damaged bonding interfaces. Quarterly Journal of Mechanics and Applied Mathematics 52, 4 (1999) 565–583. [CrossRef] [Google Scholar]
  6. L. Librescu, R. Schmidt: A general linear theory of laminated composite shells featuring interlaminar bonding imperfections. International Journal of Solids and Structures 38, 19 (2001) 3355–3375. [CrossRef] [Google Scholar]
  7. K.P. Soldatos, X. Shu: Modelling of perfectly and weakly bonded laminated plates and shallow shells. Composites Science and Technology 61, 2 (2001) 247–260. [CrossRef] [Google Scholar]
  8. J. Lee, J.-S. Kim, M. Cho: An asymptotic method-based composite plate model considering imperfect interfaces. International Journal of Solids and Structures 190 (2020) 258–270. [CrossRef] [Google Scholar]
  9. N.J. Pagano: Exact solutions for composite laminates in cylindrical bending. Journal Composite Materials 3 (1969) 398–411. [CrossRef] [Google Scholar]
  10. N. Auquier, K. Ege, E. Gourdon: Equivalent dynamic model of multilayered structures with imperfect interfaces: Application to a sandwich structured plate with sliding interfaces. Journal of Sound and Vibration 535 (2022) 117052. [CrossRef] [Google Scholar]
  11. J.P. Jones, J.S. Whittier: Waves at a flexibly bonded interface. Journal of Applied Mechanics 34, 4 (1967) 905–909. [CrossRef] [Google Scholar]
  12. F.J. Margetan, R.B. Thompson, J.H. Rose, T.A. Gray: The interaction of ultrasound with imperfect interfaces: experimental studies of model structures. Journal of Nondestructive Evaluation 11, 3–4 (1992) 109–126. [CrossRef] [Google Scholar]
  13. A.I. Lavrentyev, J.T. Beals: Ultrasonic measurement of the diffusion bond strength. Ultrasonics 38, 1–8 (2000) 513–516. [CrossRef] [PubMed] [Google Scholar]
  14. L. Attar, D. Leduc, M.E.C. El Kettani, M.V. Predoi, J. Galy, P. Pareige: Detection of the degraded interface in dissymmetrical glued structures using Lamb waves. NDT & E International 111 (2020) 102213. [CrossRef] [Google Scholar]
  15. J.L. Guyader, C. Lesueur: Acoustic transmission through orthotropic multilayered plates, part II: transmission loss. Journal of Sound and Vibration 58, 1 (1978) 69–86. [CrossRef] [Google Scholar]
  16. R.D. Mindlin: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics 18 (1951) 31–38. [CrossRef] [Google Scholar]
  17. E. Reissner: The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics 12 (1945) 69–77. [Google Scholar]
  18. F. Marchetti: Modélisation et caractérisation large bande de plaques multicouches anisotropes (NNT 2019LYSEI130). Vibrations, Institut National des Sciences Appliquées de Lyon (INSA Lyon), France, 2019. [Google Scholar]
  19. R. Massabò, F. Campi: An efficient approach for multilayered beams and wide plates with imperfect interfaces and delaminations. Composite Structures 116 (2014) 311–324. [CrossRef] [Google Scholar]
  20. F. Marchetti, K. Ege, Q. Leclère, N.B. Roozen: On the structural dynamics of laminated composite plates and sandwich structures; a new perspective on damping identification. Journal of Sound and Vibration 474 (2020) 115256. [CrossRef] [Google Scholar]
  21. A. Loredo, A. Castel: A multilayer anisotropic plate model with warping functions for the study of vibrations reformulated from Woodcock’s work. Journal of Sound and Vibration 332, 1 (2013) 102–125. [CrossRef] [Google Scholar]
  22. A.E.H. Love: XVI. The small free vibrations and deformation of a thin elastic shell. Philosophical Transactions of the Royal Society of London (A) 179 (1888) 491–546. [CrossRef] [Google Scholar]
  23. F. Pierron, M. Grédiac: The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements. Springer-Verlag, New York, 2012. [Google Scholar]
  24. A. Berry, O. Robin, F. Pierron: Identification of dynamic loading on a bending plate using the virtual fields method. Journal of Sound and Vibration 333 (2014) 7151–7164. [CrossRef] [Google Scholar]
  25. A. Berry, O. Robin: Identification of spatially correlated excitations on a bending plate using the virtual fields method. Journal of Sound and Vibration 375 (2016) 76–91. [CrossRef] [Google Scholar]
  26. N. Madinier, Q. Leclère, K. Ege, A. Berry: Development of a frequency-adapted virtual fields method as an alternative to the corrected force analysis technique for dynamic forces and structural parameter identification. Journal of Sound and Vibration 573 (2024) 118220. [CrossRef] [Google Scholar]
  27. P. Margerit, A. Lebée, J.-F. Caron, K. Ege, X. Boutillon: The high-resolution wavevector analysis for the characterization of the dynamic response of composite plates. Journal of Sound and Vibration 458 (2019) 177–196. [CrossRef] [Google Scholar]
  28. J. Berthaut, M.N. Ichchou, L. Jezequel: K-space identification of apparent structural behaviour. Journal of Sound and Vibration 280 (2005) 1125–1131. [CrossRef] [Google Scholar]
  29. N.B. Roozen, Q. Leclère, K. Ege, Y. Gerges: Estimation of plate material properties by means of a complex wavenumber fit using Hankel’s functions and the image source method. Journal of Sound and Vibration 390 (2017) 257–271. [CrossRef] [Google Scholar]
  30. F. Marchetti, N.B. Roozen, J. Segers, K. Ege, M. Kersemans, Q. Leclère: Experimental methodology to assess the dynamic equivalent stiffness properties of elliptical orthotropic plates. Journal of Sound and Vibration 495 (2021) 115897. [CrossRef] [Google Scholar]
  31. C. Pézerat, J.-L. Guyader: Two inverse methods for localization of external sources exciting a beam. Acta Acustica 3, 1 (1995) 1–10. [Google Scholar]
  32. C. Pézerat, J.-L. Guyader: Force analysis technique: reconstruction of force distributions on plates. Acta Acustica 86, 2 (2000) 322–332. [Google Scholar]
  33. F. Ablitzer, C. Pézerat, J.-M. Génevaux, J. Bégué: Identification of stiffness and damping properties of plates by using the local equation of motion. Journal of Sound and Vibration 333, 9 (2014) 2454–2468. [CrossRef] [Google Scholar]
  34. F. Ablitzer, C. Pézerat, B. Lascoup, J. Brocail: Identification of the flexural stiffness parameters of an orthotropic plate from the local dynamic equilibrium without a priori knowledge of the principal directions. Journal of Sound and Vibration 404 (2017) 31–46. [CrossRef] [Google Scholar]
  35. Q. Leclère, C. Pézerat: Vibration source identification using corrected finite difference schemes. Journal of Sound and Vibration 331, 6 (2012) 1366–1377. [CrossRef] [Google Scholar]
  36. Q. Leclère, F. Ablitzer, C. Pézerat: Practical implementation of the corrected force analysis technique to identify the structural parameter and load distributions. Journal of Sound and Vibration 351 (2015) 106–118. [CrossRef] [Google Scholar]
  37. K. Ege, N.B. Roozen, Q. Leclère, R.G. Rinaldi: Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment. Journal of Sound and Vibration 426 (2018) 129–149. [CrossRef] [Google Scholar]
  38. F. Marchetti, K. Ege, Q. Leclère: Development of the corrected force analysis technique for laminated composite panels. Journal of Sound and Vibration 490 (2021) 115692. [CrossRef] [Google Scholar]
  39. N. Madinier, Q. Leclère, K. Ege, A. Berry: Spatial and frequency identification of the dynamic properties of thin plates with the frequency-adapted virtual fields method. Journal of Sound and Vibration 596 (2025) 118760. [CrossRef] [Google Scholar]
  40. E.G. Williams: Continuation of acoustic near-fields. Journal of the Acoustical Society of America 113, 3 (2003) 1273–1281. [CrossRef] [PubMed] [Google Scholar]
  41. M. Le Deunf, C. Pézerat, F. Ablitzer, N. Merlette: Inverse vibration problem used for the characterization of the damping added by a trim foam on a plate. SAE Technical Paper 113, 3 (2020) 2020-01-1580. [CrossRef] [Google Scholar]
  42. T. Sacco: Dynamique des matériaux multicouches à interfaces complexes: Fabrication et expérimentation d'échantillons à glissement d’interface. Rapport de Projet de Fin d’Etudes, Département Génie Mécanique, INSA Lyon, 2023. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.