Open Access
Issue
Acta Acust.
Volume 8, 2024
Article Number 37
Number of page(s) 11
Section Acoustic Materials and Metamaterials
DOI https://doi.org/10.1051/aacus/2024039
Published online 16 September 2024
  1. M.L. Munjal: Acoustics of ducts and mufflers, 2nd edn., John Wiley & Sons Ltd, Chichester, 2014. [Google Scholar]
  2. H.V. Fuchs: Schallabsorber und Schalldämpfer, 2nd edn., Springer-Verlag Berlin Heidelberg, Berlin Heidelberg, 2006. [Google Scholar]
  3. M.J.T. Smith: Aircraft noise, Cambridge University Press, Cambridge, 1989. [CrossRef] [Google Scholar]
  4. S. Busse-Gerstengarbe: Untersuchung von lokal und nichtlokal reagierenden akustischen Dämpfern (Linern) für Triebwerke, PhD thesis, Technische Universität Berlin, 2015. [Google Scholar]
  5. M. Villau, H. Rämmal, J. Lavrentjev: Innovative fibreless HVAC duct silencer based on microperforated elements, Materials Today: Proceedings 47 (2021) 3154–3160. [CrossRef] [Google Scholar]
  6. S. Allam, M. Åbom: Fan noise control using microperforated splitter silencers, Journal of Vibration and Acoustics 136 (2014) 031017-1–031017-8. [CrossRef] [Google Scholar]
  7. R. Kabral, L. Du, M. Åbom, M. Knutsson: A compact silencer for the control of compressor noise, SAE International of Engines 7, 3 (2014) 1574–1578. [Google Scholar]
  8. D.-Y. Maa: Theory and design of microperforated panel sound-absorbing constructions, Scientia Sinica 18, 1 (1975) 55–71. [Google Scholar]
  9. D. Maa: Microperforated-panel wideband absorbers, Noise Control engineering Journal 29, 3 (1987) 77–84. [CrossRef] [Google Scholar]
  10. D. Maa: Potential of microperforated panel absorber, The Journal of the Acoustical Society of America 105, 5 (1998) 2861–2866. [CrossRef] [Google Scholar]
  11. S. Floss, F. Czwielong, M. Kaltenbacher, S. Becker: Design of an in-duct micro perforated panel absorber for axial fan noise attenuation, Acta Acustica 5 (2021) 24. [CrossRef] [EDP Sciences] [Google Scholar]
  12. S. Allam, M. Åbom: A new type of muffler based on microperforated tubes, Journal of Vibration and Acoustics 133, 3 (2011) 031005-1–031005-8. [CrossRef] [Google Scholar]
  13. M. Åbom, S. Allam: Dissipative silencers based on micro-perforated plates, in: Proceedings of 11th International Conference on Engines & Vehicles, Capri, Napoli, Italy, September 15–19, 2013. [Google Scholar]
  14. P. Cobo, C. de la Colina, F. Simón: On the modelling of microslit panel absorbers, Applied Acoustics 159 (2020) 107118. [CrossRef] [Google Scholar]
  15. H. Zhao, Y. Wang, J. Wen, Y.W. Lam, O. Umnova: A slim subwavelength absorber based on coupled microslits, Applied Acoustics 142 (2018) 11–17. [CrossRef] [Google Scholar]
  16. Z. Liu, J. Zhan, M. Fard, L.J. Davy: Acoustic properties of multilayer sound with a 3D printed mirco-perforated panel, Applied Acoustics 121 (2017) 25–32. [CrossRef] [Google Scholar]
  17. F.-C. Lee, W.-H. Chen: Acoustic transmission analysis of multi-layer absorbers, Journal of Sound and Vibration 248, 4 (2001) 621–634. [CrossRef] [Google Scholar]
  18. W.A. Davern: Perforated facings backed with porous materials as sound absorbers – an experimental study, Applied Acoustics 10 (1977) 85–112. [CrossRef] [Google Scholar]
  19. D.H. Lee, Y.P. Kwon: Estimation of the absorption performance of multiple layer perforated panel systems by transfer matrix method, Journal of Sound and Vibration 278 (2004) 847–860. [CrossRef] [Google Scholar]
  20. R. Tayong, T. Dupont, P. Leclaire: Sound absorption of a micro-perforated plate backed by a porous material under high sound excitation: measurement and prediction, International Journal of Engineering & Technology 2, 4 (2013) 281. [CrossRef] [Google Scholar]
  21. J. Ning, Q. Geng, M.P. Arunkumar, Y. Li: Wide absorption bandwidth of a light composite absorber based on micro-perforated sandwich panel, Applied Acoustics 174 (2021) 107735. [CrossRef] [Google Scholar]
  22. H. Shao, J. He, J. Zhu, G. Chen, H. He: Low-frequency sound absorption of a tunable multilayer composite structure, Journal of Vibration and Control 28, 17–18 (2022) 2279–2287. [CrossRef] [Google Scholar]
  23. L. Yuvaraj, S. Jeyanthi, Acoustic performance of countersunk micro-perforated panel in multilayer porous material, Building Acoustics 27, 1 (2019) 3–20. [Google Scholar]
  24. J. Carbajo, S.G. Mosanenzadeh, S. Kim, N.X. Fang: Multi-layer perforated panel absorbers with oblique perforations, Applied Acoustics 169 (2020) 107496. [CrossRef] [Google Scholar]
  25. W. Yang, X. Bai, W. Zhu, R. Kiran, J. An, C.K. Chua, K. Zhou: 3D printing of polymeric multi-layer micro-perforated panels for tunable wideband sound absorption, Polymers 12 (2020) 360. [CrossRef] [PubMed] [Google Scholar]
  26. D. Li, D. Chang, B. Liu, J. Tian: Improving sound absorption bandwidth of micro-perforated panel by adding porous materials, INTER-NOISE and NOISE-CON Congress and Conference Proceedings 249 (2014) 6. [Google Scholar]
  27. M. Rusli, F. Rahman, H. Dahlan, G. Bur, M. Bur: Sound absorption characteristics of a single micro-perforated panel backed by a natural fiber absorber material, Solid State Phenomena 307 (2020) 291–296. [CrossRef] [Google Scholar]
  28. Y. Wang, C. Zhang, L. Ren, M. Ichchou, M.-A. Galland, O. Bareille: Sound absorption of a new bionic multi-layer absorber, Composite Structures 108 (2014) 400–408. [CrossRef] [Google Scholar]
  29. Z. Liu, J. Zhan, M. Fard, J.L. Davy: Acoustic properties of a porous polycarbonate material produced by additive manufacturing, Material Letters 181 (2016) 296–299. [CrossRef] [Google Scholar]
  30. D.C. Akiwate, M.D. Date, B. Venkatesham, S. Suryakumur: Acoustic properties of additive manufactured narrow tube periodic structures, Applied Acoustics 136 (2018) 123–131. [CrossRef] [Google Scholar]
  31. D.C. Akiwate, M.D. Date, B. Venkatesham, S. Simhambhatla: Acoustic properties of additive manufactured porous material, in: M. Singh, Y. Rafat (Eds.), Recent developments in acoustics, Springer, Singapore, 2021, pp. 129–138. [CrossRef] [Google Scholar]
  32. T. Yamamoto, Y. Imae, Multi-scale analysis for sound absorption media by using microscopically periodic poroelastic material made by 3D printer, in: The 22nd International Congress on Sound and Vibration, , Florence, Italy, 12–16 July 2015. [Google Scholar]
  33. X. Cai, J. Yang, G. Hu: Sound absorption by acoustic microlattice with optimized pore configuration, Journal of the Acoustical Society of America 144, 2, (2018) EL138–EL143. [CrossRef] [PubMed] [Google Scholar]
  34. M.D. Guild, C.A. Rohde, M.C. Rothko, C.F. Sieck: 3D printed acoustic metamaterial sound absorber using functionally-graded sonic crystals, European Acoustics Association, Crete, 2018. [Google Scholar]
  35. T. Ring, S. Kuschmitz, H. Watschke, T. Vietor, S.C. Langer: Additive Fertigung und Charakterisierung akustisch wirksamer Materialien, in: Jahrestagung für Akustik DAGA2018, München, 19–22 March, 2018. [Google Scholar]
  36. D. Akiwate, M.S. Ranjan, B. Venkatesham, S. Simhambhatla, S. Suryakumar: Acoustic characterization of additive manufactured layered porous material, INTER-NOISE and NOISE-CON Congress and Conference Proceedings 259 (2019) 6. [Google Scholar]
  37. E.R. Fotsing, A. Dubourg, A. Ross, J. Mardjono: Acoustic properties of a periodic micro-structures obtained by additive manufacturing, Applied Acoustics 148 (2019) 322–331. [CrossRef] [Google Scholar]
  38. J. Boulvert, T. Cavalieri, J. Costa-Baptista, L. Schwan, V. Romero-Garcia, G. Gabard, E.R. Fotsing, A. Ross, J. Mardjono, J.-P. Groby: Optimally graded porous material for broadband perfect absorption of sound, Journal of Applied Physics 126, 17 (2019) 175101. [CrossRef] [Google Scholar]
  39. M. Vasina, K. Monkova, P.P. Monka, D. Kozak, J. Tkac: Study of the sound absorption properties of 3D-printed open-porous ABS material structures, Polymers 125 (2020) 1062. [CrossRef] [PubMed] [Google Scholar]
  40. J. Carbajo, J.M. Molina-Jordá, L.P. Maiorano, N.X. Fang: Sound absorption of macro-perforated additively manufactured media, Applied Acoustics 182 (2021) 108204. [CrossRef] [Google Scholar]
  41. W. Johnston, B. Sharma: Additive manufacturing of fibrous sound absorbers, Additive Manufacturing 41 (2021) 101984. [CrossRef] [Google Scholar]
  42. B. Berchtenbreiter, S. Becker: Complex fluid properties of additively manufactured periodic lattice structures, in: Jahrestagung für Akustik – DAGA, , Wien and Online, 15–18 August 2021, pp. 116–119. [Google Scholar]
  43. S. Deshmukh, H. Ronge, S. Ramamoorthy: Design of periodic foam structures for acoustical applications: concept, parametric study and experimental validation, Materials and Design 175 (2019) 107830. [CrossRef] [Google Scholar]
  44. K.C. Opiela, T. Zieliński: Adaption of the equivalent-fluid model to the additively manufactured acoustic porous materials, in: M. Ochmann, M. Vorländer, J. Fels (Eds.), Proceedings of the 23rd International Congress on Acoustics: Integrating 4th EAA Euroregio 2019, Aachen, Germany, 9–13 September 2019, Deutsche Gesellschaft für Akustik, Aachen, Germany, 2019, pp. 1216–1223. [Google Scholar]
  45. X. Zhao, X. Fan: Enhancing low frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plates, Applied Acoustics 88 (2015) 123–128. [CrossRef] [Google Scholar]
  46. J.F. Allard, N. Atalla: Propagation of sound in porous media: modelling sound absorbing materials, 2nd edn. John Wiley & Sons, Chichester, 2009. [CrossRef] [Google Scholar]
  47. D.L. Johnson, J. Koplik, R. Dashen: Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of Fluid Mechanics 176 (1987) 379–402. [Google Scholar]
  48. Y. Champoux, J.-F. Allard: Dynamic tortuosity and bulk modulus in air-saturated porous media, Journal of Applied Physics 70, 4 (1991) 1975–1979. [CrossRef] [Google Scholar]
  49. N. Atalla, F. Sgard: Modeling of perforated plates and screens using rigid frame porous models, Journal of Sound and Vibration 303, 1–2 (2007) 195–208. [Google Scholar]
  50. T.G. Zieliński, F. Chevilotte, E. Deckers: Sound absorption of plates with micro-slits backed with air cavities: Analytical estimations, numerical calculations and experimental validations, Applied Acoustics 146 (2019) 261–279. [CrossRef] [Google Scholar]
  51. B. Berchtenbreiter: Double-Layer MPA mit additiv gefertigten porösen Absorbern, PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2023. [Google Scholar]
  52. D. Lafarge: Propagation du son dans les matériaux poreux à structure rigide saturés par un fluide viscothermique: Définition de paramétres géométriques, analogie electromagnétique, temps de relaxation, PhD thesis, Université du Maine Le Mans, 1993. [Google Scholar]
  53. D. Lafarge, P. Lemarinier, J.F. Allard, V. Tarnow: Dynamic compressibility of air in porous structures at audible frequencies, Journal of the Acoustical Society of America 102, 4 (1997) 1995–2006. [CrossRef] [Google Scholar]
  54. M. Niskanen, J.-P. Groby, A. Duclos, O. Dazel, J.C. Le Roux, N. Poulain, T. Huttunen, T. Lähivaara: Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements, Journal of the Acoustical Society of America 142, 4 (2017) 2407–2418. [CrossRef] [PubMed] [Google Scholar]
  55. B.H. Song, J.S. Bolton: A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials, Journal of the Acoustical Society of America 107, 3 (2000) 1131–1152. [CrossRef] [PubMed] [Google Scholar]
  56. A. Schulz: Die akustischen Randbedingungen perforierter Wandauskleidungen in Strömungskanälen – Physikalische Modelle und Eduktion, PhD thesis, Technische Universität Berlin, 2019. [Google Scholar]
  57. L. Cremer: Theorie der Luftschall-Dämpfung im Rechteckkanal mit schluckender Wand und das sich dabei ergebende höchste Dämfpungsmaß, Acustica 3, 2 (1953) 249–263. [Google Scholar]
  58. The MathWorks: MATLAB mathematics, Version 2018a, 2018. Available at https://de.mathworks.com/help/gads/ga.html?searchHighlight=ga&s_tid=srchtitle_support_results_1_ga. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.