Issue
Acta Acust.
Volume 9, 2025
Topical Issue - Virtual acoustics
Article Number 9
Number of page(s) 20
DOI https://doi.org/10.1051/aacus/2024062
Published online 21 January 2025
  1. L. Aspöck, S. Pelzer, F. Wefers, M. Vorländer: A real-time auralization plugin for architectural design and education, in: Proceedings of the EAA Joint Symposium on Auralization and Ambisonics, Berlin, Germany, 3–5 April, 2014. [Google Scholar]
  2. S. Pelzer, L. Aspöck, D. Schröder, M. Vorländer: Integrating real-time room acoustics simulation into a cad modeling software to enhance the architectural design process, Buildings 4 (2014) 113–138. https://doi.org/10.3390/buildings4020113. [CrossRef] [Google Scholar]
  3. J.H. Rindel: The use of computer modeling in room acoustics, Journal of Vibroengineering 3 (2000) 219–224. [Google Scholar]
  4. N. Raghuvanshi, J. Snyder: Parametric directional coding for precomputed sound propagation, ACM Transactions on Graphics 37 (2018) 1–14. https://doi.org/10.1145/3197517.3201339. [Google Scholar]
  5. S.V. Amengual Garí, C. Schissler, R. Mehra, S. Featherly, P. Robinson: Evaluation of real-time sound propagation engines in a virtual reality framework, in: Audio Engineering Society Conference: 2019 AES International Conference on Immersive and Interactive Audio, York, UK, 27–29 March, 2019. [Google Scholar]
  6. V. Valimaki, J.D. Parker, L. Savioja, J.O. Smith, J.S. Abel: Fifty years of artificial reverberation, IEEE Transactions on Audio, Speech, and Language Processing 20 (2012) 1421–1448. https://doi.org/10.1109/TASL.2012.2189567. [CrossRef] [Google Scholar]
  7. F. Brinkmann, L. Aspöck, D. Ackermann, S. Lepa, M. Vorländer, S. Weinzierl: A round robin on room acoustical simulation and auralization, Journal of the Acoustical Society of America 145 (2019) 2746–2760. https://doi.org/10.1121/1.5096178. [CrossRef] [PubMed] [Google Scholar]
  8. L. Savioja, U.P. Svensson: Overview of geometrical room acoustic modeling techniques, Journal of the Acoustical Society of America 138 (2015) 708–730. https://doi.org/10.1121/1.4926438. [Google Scholar]
  9. B.U. Seeber, S.W. Clapp: Interactive simulation and free-field auralization of acoustic space with the rTSOFE, Journal of the Acoustical Society of America 141 (2017) 3974–3974. https://doi.org/10.1121/1.4989063. [CrossRef] [Google Scholar]
  10. A. Ahrens, K.D. Lund, M. Marschall, T. Dau: Sound source localization with varying amount of visual information in virtual reality, PLoS One 14 (2019) e0214603. https://doi.org/10.1371/journal.pone.0214603. [CrossRef] [PubMed] [Google Scholar]
  11. F. Pausch, J. Fels: Localization performance in a binaural real-time auralization system extended to research hearing aids, Trends in Hearing 24 (2020) 2331216520908704. https://doi.org/10.1177/2331216520908704. [CrossRef] [Google Scholar]
  12. H. Hu, L. Zhou, H. Ma, Z. Wu: HRTF personalization based on artificial neural network in individual virtual auditory space, Applied Acoustics 69 (2008) 163–172. https://doi.org/10.1016/j.apacoust.2007.05.007. [CrossRef] [Google Scholar]
  13. F. Pausch, L. Aspöck, M. Vorländer, J. Fels: An extended binaural real-time auralization system with an interface to research hearing aids for experiments on subjects with hearing loss, Trends in Hearing 22 (2018) 2331216518800871. https://doi.org/10.1177/2331216518800871. [CrossRef] [Google Scholar]
  14. D. Schröder: Physically based real-time auralization of interactive virtual environments, Rheinisch-Westfälischen Technischen Hochschule Aachen, Aachen, Germany, 2011 [Google Scholar]
  15. H. Hu, L. Zhou, H. Ma, F. Yang, Z. Wu: Externalization of headphone based virtual sound system, Journal of Southeast University (Natural Science Edition) 38 (2008) 1–5. [Google Scholar]
  16. J.B. Allen, D.A. Berkley: Image method for efficiently simulating small‐room acoustics, Journal of the Acoustical Society of America 65 (1979) 943–950. https://doi.org/10.1121/1.382599. [CrossRef] [Google Scholar]
  17. J. Borish: Extension of the image model to arbitrary polyhedra, Journal of the Acoustical Society of America 75 (1984) 1827–1836. https://doi.org/10.1121/1.390983. [CrossRef] [Google Scholar]
  18. A. Krokstad, S. Strom, S. Sørsdal: Calculating the acoustical room response by the use of a ray tracing technique, Journal of Sound and Vibration 8 (1968) 118–125. https://doi.org/10.1016/0022-460x(68)90198-3. [CrossRef] [Google Scholar]
  19. M. Vorländer: Simulation of the transient and steady‐state sound propagation in rooms using a new combined ray‐tracing/image‐source algorithm, Journal of the Acoustical Society of America 86 (1989) 172–178. https://doi.org/10.1121/1.398336. [CrossRef] [Google Scholar]
  20. A.D. Pierce: Diffraction of sound around corners and over wide barriers, Journal of the Acoustical Society of America 55 (1974) 941–955. https://doi.org/10.1121/1.1914668. [Google Scholar]
  21. R.G. Kouyoumjian, P.H. Pathak: A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proceedings of the IEEE 62 (1974) 1448–1461. https://doi.org/10.1109/PROC.1974.9651. [Google Scholar]
  22. U.P. Svensson, R.I. Fred, J. Vanderkooy: An analytic secondary source model of edge diffraction impulse responses, Journal of the Acoustical Society of America 106 (1999) 2331–2344. https://doi.org/10.1121/1.428071. [CrossRef] [Google Scholar]
  23. M.A. Biot, I. Tolstoy: Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction, Journal of the Acoustical Society of America 29 (1957) 381–391. https://doi.org/10.1121/1.1908899. [Google Scholar]
  24. C. Kirsch, S.D. Ewert: Low-order filter approximation of diffraction for virtual acoustics, in: 2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 17–20 October, IEEE, 2021, pp. 341–345. [Google Scholar]
  25. S.D. Ewert: A filter representation of diffraction at infinite and finite wedges, JASA Express Letters 2 (2022) 092401. https://doi.org/10.1121/10.0013686. [CrossRef] [PubMed] [Google Scholar]
  26. C. Kirsch, S.D. Ewert: A universal filter approximation of edge diffraction for geometrical acoustics, IEEE/ACM Transactions on Audio, Speech, and Language Processing 31 (2023) 1636–1651. https://doi.org/10.1109/taslp.2023.3264737. [CrossRef] [Google Scholar]
  27. A. Erraji, J. Stienen, M. Vorländer: The image edge model, Acta Acustica 5 (2021) 17. https://doi.org/10.1051/aacus/2021010. [CrossRef] [EDP Sciences] [Google Scholar]
  28. C. Schissler, G. Mückl, P. Calamia: Fast diffraction pathfinding for dynamic sound propagation, ACM Transactions on Graphics (TOG) 40 (2021) 1–13. https://doi.org/10.1145/3450626.3459751. [CrossRef] [Google Scholar]
  29. V. Pulkki, U.P. Svensson: Machine-learning-based estimation and rendering of scattering in virtual reality, Journal of the Acoustical Society of America 145 (2019) 2664–2676. https://doi.org/10.1121/1.5095875. [CrossRef] [PubMed] [Google Scholar]
  30. J. Mannall, L. Savioja, P. Calamia, R. Mason, E. De Sena: Efficient diffraction modeling using neural networks and infinite impulse response filters, Journal of the Audio Engineering Society 71 (2023) 566–576. https://doi.org/10.17743/jaes.2022.0107. [CrossRef] [Google Scholar]
  31. M. Vorländer, E. Mommertz: Definition and measurement of random-incidence scattering coefficients, Applied Acoustics 60 (2000) 187–199. https://doi.org/10.1016/S0003-682X(99)00056-0. [CrossRef] [Google Scholar]
  32. H. Kuttruff: A simple iteration scheme for the computation of decay constants in enclosures with diffusely reflecting boundaries, Journal of the Acoustical Society of America 98 (1995) 288–293. https://doi.org/10.1121/1.413727. [CrossRef] [Google Scholar]
  33. R.R. Torres, M. Kleiner, B.-I. Dalenbäck: Audibility of “diffusion” in room acoustics auralization an initial investigation, Acta Acustica united with Acustica 86 (2000) 919–927. [Google Scholar]
  34. L. Aspöck, M. Vorländer: Differences between measured and simulated room impulse responses, in: INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Glasgow, Scotland, 21–24 August, Institute of Noise Control Engineering, 2023, pp. 3209–3217. [Google Scholar]
  35. J. S. Abel, P. Huang: A simple, robust measure of reverberation echo density Audio Engineering Society Convention 121, San Francisco, CA, USA, 5–8 October, 2006. [Google Scholar]
  36. S. Siltanen, T. Lokki, S. Tervo, L. Savioja: Modeling incoherent reflections from rough room surfaces with image sources, Journal of the Acoustical Society of America 131 (2012) 4606–4614. https://doi.org/10.1121/1.4711013. [CrossRef] [PubMed] [Google Scholar]
  37. J.-M. Jot, A. Chaigne: Digital delay networks for designing artificial reverberators, in: Audio Engineering Society Convention 90, Pairs, France, 19–22 February, 1991. [Google Scholar]
  38. E.A. Lehmann, A.M. Johansson: Diffuse reverberation model for efficient image-source simulation of room impulse responses, IEEE Transactions on Audio, Speech, and Language Processing 18 (2010) 1429–1439. https://doi.org/10.1109/tasl.2009.2035038. [CrossRef] [Google Scholar]
  39. V. Välimäki, K. Prawda: Late-reverberation synthesis using interleaved velvet-noise sequences, IEEE/ACM Transactions on Audio, Speech, and Language Processing 29 (2021) 1149–1160. https://doi.org/10.1109/taslp.2021.3060165. [CrossRef] [Google Scholar]
  40. B. Alary, A. Politis, S.J. Schlecht, V. Välimäki: Directional feedback delay network, Journal of the Audio Engineering Society 67 (2019) 752–762. https://doi.org/10.17743/jaes.2019.0026. [CrossRef] [Google Scholar]
  41. C. Kirsch, T. Wendt, S. Van De Par, H. Hu, S.D. Ewert: Computationally-efficient simulation of late reverberation for inhomogeneous boundary conditions and coupled rooms, Journal of the Audio Engineering Society 71 (2023) 186–201. https://doi.org/10.17743/jaes.2022.0053. [CrossRef] [Google Scholar]
  42. S. Riedel, M. Frank, F. Zotter: The effect of temporal and directional density on listener envelopment, Journal of the Audio Engineering Society 71 (2023) 455–467. https://doi.org/10.17743/jaes.2022.0088. [CrossRef] [Google Scholar]
  43. T. Wendt, S. Van de Par, S.D. Ewert: A computationally-efficient and perceptually-plausible algorithm for binaural room impulse response simulation, Journal of the Audio Engineering Society 62 (2014) 748–766. https://doi.org/10.17743/jaes.2014.0042. [CrossRef] [Google Scholar]
  44. S. Siltanen, T. Lokki, S. Kiminki, L. Savioja: The room acoustic rendering equation, Journal of the Acoustical Society of America 122 (2007) 1624–1635. https://doi.org/10.1121/1.2766781. [CrossRef] [PubMed] [Google Scholar]
  45. H. Kuttruff: Simulated reverberation curves in rectangular rooms with diffuse sound fields, Acta Acustica united with Acustica 25 (1971) 333–342. [Google Scholar]
  46. E.-M. Nosal, M. Hodgson, I. Ashdown: Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms, Journal of the Acoustical Society of America 116 (2024) 970–980. [Google Scholar]
  47. S. Siltanen, T. Lokki, L. Savioja: Frequency domain acoustic radiance transfer for real-time auralization, Acta Acustica united with Acustica 95 (2009) 106–117. https://doi.org/10.3813/AAA.918132. [CrossRef] [Google Scholar]
  48. L. Antani, A. Chandak, L. Savioja, D. Manocha: Interactive sound propagation using compact acoustic transfer operators, ACM Transactions on Graphics 31 (2012) 1–12. https://doi.org/10.1145/2077341.2077348. [CrossRef] [Google Scholar]
  49. C. Schissler, R. Mehra, D. Manocha: High-order diffraction and diffuse reflections for interactive sound propagation in large environments, ACM Transactions on Graphics 33 (2014) 1–12. https://doi.org/10.1145/2601097.2601216. [CrossRef] [Google Scholar]
  50. M.R. Schroeder: Natural sounding artificial reverberation, Journal of the Audio Engineering Society 10 (1962) 219–223. [Google Scholar]
  51. E.D. Sena, H. Hacιhabiboğlu, Z. Cvetković, J.O. Smith: Efficient synthesis of room acoustics via scattering delay networks, IEEE/ACM Transactions on Audio, Speech, and Language Processing 23 (2015) 1478–1492. https://doi.org/10.1109/taslp.2015.2438547. [CrossRef] [Google Scholar]
  52. T.B. Atalay, Z.S. Gul, E. De Sena, Z. Cvetkovic, H. Hachabiboglu: Scattering delay network simulator of coupled volume acoustics, IEEE/ACM Transactions on Audio, Speech, and Language Processing 30 (2022) 582–593. https://doi.org/10.1109/taslp.2022.3143697. [CrossRef] [Google Scholar]
  53. U. Stephenson: Eine Schallteilchen-computersimulation zur berechnung der für die Hörsamkeit in Konzertsälen massgebenden Parameter, Acta Acustica united with Acustica 59 (1985) 1–20. [Google Scholar]
  54. J.H. Rindel: Computer simulation techniques for acoustical design of rooms, Acoustics Australia 23 (1995) 81–86. [Google Scholar]
  55. D. Schröder, M. Vorländer; Raven: A real-time framework for the auralization of interactive virtual environments, in: Forum Acusticum, European Acoustics Association, 2011, pp. 1541–1546. [Google Scholar]
  56. T. Lewers: A combined beam tracing and radiatn exchange computer model of room acoustics, Applied Acoustics 38 (1993) 161–178. [CrossRef] [Google Scholar]
  57. K.H. Kuttruff: Auralization of impulse responses modeled on the basis of ray-tracing results, Journal of the Audio Engineering Society 41 (1993) 876–880. [Google Scholar]
  58. L. Savioja, J. Huopaniemi, T. Lokki, R. Väänänen: Creating interactive virtual acoustic environments, Journal of the Audio Engineering Society 47 (1999) 675–705. [Google Scholar]
  59. S.D. Ewert, N. Gößling, O. Buttler, S. van de Par, H. Hu: Computationally-efficient and perceptually-motivated rendering of diffuse reflections in room acoustics simulation, in: 10th Convention of the European Acoustics Association (Forum Acusticum 2023), Turin, Italy, 11–15 September, 2023. [Google Scholar]
  60. T.J. Cox, P. D’Antonio: Acoustic absorbers and diffusers: theory, design and application, 2nd edn., Taylor & Francis, London, New York, 2009. [Google Scholar]
  61. P.W. Robinson, A. Walther, C. Faller, J. Braasch: Echo thresholds for reflections from acoustically diffusive architectural surfaces, Journal of the Acoustical Society of America 134 (2013) 2755–2764. https://doi.org/10.1121/1.4820890. [CrossRef] [PubMed] [Google Scholar]
  62. S.J. Schlecht, E.A.P. Habets: Scattering in feedback delay networks, IEEE/ACM Transactions on Audio, Speech, and Language Processing 28 (2020) 1915–1924. https://doi.org/10.1109/taslp.2020.3001395. [CrossRef] [Google Scholar]
  63. T. Carpentier, M. Noisternig, O. Warusfel: Hybrid reverberation processor with perceptual control, in: 17th International Conference on Digital Audio Effects-DAFx-14, Erlangen, Germany, 1–5 September, 2014, pp. 93–100. [Google Scholar]
  64. J.-M. Jot, R. Audfray, M. Hertensteiner, B. Schmidt: Rendering spatial sound for interoperable experiences in the audio metaverse, in: 2021 Immersive and 3D Audio: from Architecture to Automotive (I3DA), Bologna, Italy, 8–10 September, IEEE, 2021, pp. 1–15. [Google Scholar]
  65. H. Kuttruff: Room acoustics, 6th edn., CRC Press, Boca Raton, FL, 2017, p. 97. [Google Scholar]
  66. C. Kirsch, J. Poppitz, T. Wendt, S. van de Par, S.D. Ewert: Spatial resolution of late reverberation in virtual acoustic environments, Trends in Hearing 25 (2021) 1–17. https://doi.org/10.1177/23312165211054. [Google Scholar]
  67. C. Kirsch, J. Poppitz, T. Wendt, S.V.D. Par, S.D. Ewert: Computationally efficient spatial rendering of late reverberation in virtual acoustic environments, in: 2021 Immersive and 3D Audio: from Architecture to Automotive (I3DA), Bologna, Italy, 8–10 September, IEEE, 2021, pp. 1–8. [Google Scholar]
  68. A. Lindau, V. Erbes, S. Lepa, H.-J. Maempel, F. Brinkman, S. Weinzierl: A spatial audio quality inventory (SAQI), Acta Acustica united with Acustica 100 (2014) 984–994. https://doi.org/10.3813/AAA.918778. [CrossRef] [Google Scholar]
  69. V.L. Jordan: Acoustical criteria for auditoriums and their relation to model techniques, Journal of the Acoustical Society of America 47 (1970) 408–412. https://doi.org/10.1121/1.1911535. [CrossRef] [Google Scholar]
  70. M.R. Schroeder: Digital simulation of sound transmission in reverberant spaces, Journal of the Acoustical Society of America 47 (1970) 424–431. https://doi.org/10.1121/1.1911541. [CrossRef] [Google Scholar]
  71. M.R. Schroeder, B.F. Logan: Colorless artificial reverberation, IRE Transactions on Audio AU-9 (1961) 209–214. https://doi.org/10.1109/TAU.1961.1166351. [CrossRef] [Google Scholar]
  72. M. Jeub, M. Schafer, P. Vary: A binaural room impulse response database for the evaluation of dereverberation algorithms, in: 16th International Conference on Digital Signal Processing, Santorini, Greece, 5–7 July, IEEE, 2009, pp. 1–5. [Google Scholar]
  73. L. Hladek, B. Seeber: Underground station environment (1.1) [dataset], Zenodo, 2022. Available at https://doi.org/10.5281/zenodo.6025631. [Google Scholar]
  74. S. van de Par, S.D. Ewert, L. Hladek, C. Kirsch, J. Schütze, J. Llorca-Bofí, G. Grimm, M.M. Hendrikse, B. Kollmeier, B.U. Seeber: Auditory-visual scenes for hearing research, Acta Acustica 6 (2022) 55. https://doi.org/10.1051/aacus/2022032. [CrossRef] [EDP Sciences] [Google Scholar]
  75. S. Weinzierl, S. Lepa, D. Ackermann: A measuring instrument for the auditory perception of rooms: the room acoustical quality inventory (RAQI), Journal of the Acoustical Society of America 144 (2018) 1245–1257. https://doi.org/10.1121/1.5051453. [CrossRef] [PubMed] [Google Scholar]
  76. ITU-R: Recommendation ITU-R BS.1534–3 method for the subjective assessment of intermediate quality level of audio systems, International Telecommunication Union Radiocommunication Assembly, 2015. [Google Scholar]
  77. L. Cremer: Die wissenschaftlichen Grundlagen der Raumakustik. Band I: Geometrische Raumakustik, Hirzel, Stuttgart, 1948. [Google Scholar]
  78. M.A. Biot: Generalized boundary condition for multiple scatter in acoustic reflection, Journal of the Acoustical Society of America 44 (1968) 1616–1622. [CrossRef] [Google Scholar]
  79. M.A. Biot: On the reflection of acoustic waves on a rough surface, Journal of the Acoustical Society of America 30 (1958) 479–480. [CrossRef] [Google Scholar]
  80. M.A. Biot: Reflection on a rough surface from an acoustic point source, Journal of the Acoustical Society of America 29 (1957) 1193–1200. [CrossRef] [Google Scholar]
  81. A. Haeussler, S. van de Par: Crispness, speech intelligibility, and coloration of reverberant recordings played back in another reverberant room (room-in-room), The Journal of the Acoustical Society of America 145 (2019) 931–944. https://doi.org/10.1121/1.5090103. [CrossRef] [PubMed] [Google Scholar]
  82. J. Fagerström, B. Alary, S.J. Schlecht, V. Välimäki: Velvet-noise feedback delay network, in: 23rd International Conference on Digital Audio Effects (DAFx), Vienna, Austria, 8–12 September, 2020, pp. 219–226. [Google Scholar]
  83. S.J. Schlecht, E.A.P. Habets: Feedback delay networks: Echo density and mixing time, IEEE/ACM Transactions on Audio, Speech, and Language Processing 25 (2017) 374–383. https://doi.org/10.1109/taslp.2016.2635027. [CrossRef] [Google Scholar]
  84. S.J. Schlecht, E.A.P. Habets: Dense reverberation with delay feedback matrices, in: 2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 20–23 October, IEEE, 2019, pp. 150–154. [Google Scholar]
  85. T. Lokki, J. Pätynen, S. Tervo, S. Siltanen, L. Savioja: Engaging concert hall acoustics is made up of temporal envelope preserving reflections, Journal of the Acoustical Society of America 129 (2011) EL223–EL228. https://doi.org/10.1121/1.3579145. [CrossRef] [PubMed] [Google Scholar]
  86. H. Haas: The influence of a single echo on the audibility of speech, Acoustica 1 (1951) 49–58. [Google Scholar]
  87. H. Wallach, E.B. Newman, M.R. Rosenzweig: The precedence effect in sound localization, American Journal of Psychology 62 (1949) 315–336. https://doi.org/10.2307/1418275. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.