Issue
Acta Acust.
Volume 9, 2025
Topical Issue - Musical Acoustics: Latest Advances in Analytical, Numerical and Experimental Methods Tackling Complex Phenomena in Musical Instruments
Article Number 10
Number of page(s) 14
DOI https://doi.org/10.1051/aacus/2024084
Published online 18 February 2025
  1. N.H. Fletcher, T.D. Rossing: The physics of musical instruments, 2nd edition. Springer, New York, 1998. [Google Scholar]
  2. A. Miklós, J. Angster: Properties of the sound of flue organ pipes. Acustica-Acta Acustica 86, 4 (2000) 611–622. [Google Scholar]
  3. E.L Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders: Fundamentals of acoustics, 4th edition. John Wiley & Sons, Inc., 2000. [Google Scholar]
  4. C. Zwikker, C.W. Kosten: Sound absorbing materials. Elsevier, 1949. [Google Scholar]
  5. Y. Kulik: Transfer matrix of conical waveguides with any geometric parameters for increased precision in computer modeling. Journal of the Acoustical Society of America 122 (2007) EL179–EL184. http://dx.doi.org/10.1121/1.2794865. [CrossRef] [PubMed] [Google Scholar]
  6. A. Ernoult, J. Kergomard: Transfer matrix of a truncated cone with viscothermal losses: application of the WKB method. Acta Acustica 4, 2 (2020) 7. http://dx.doi.org/10.1051/aacus/2020005. [CrossRef] [EDP Sciences] [Google Scholar]
  7. T. Grothe, J. Baumgart, C.J. Nederveen: A transfer matrix for the input impedance of weakly tapered, dissipative cones as of wind instruments (L). Journal of the Acoustical Society of America 154, 1 (2023) EL463–EL466. http://dx.doi.org/10.1121/10.0020270. [CrossRef] [PubMed] [Google Scholar]
  8. A. Thibault, J. Chabassier, H. Boutin, T. Hélie: Transmission line coefficients for viscothermal acoustics in conical tubes. Journal of Sound and Vibration 543 (2023) 117355. http://dx.doi.org/10.1016/j.jsv.2022.117355. [CrossRef] [Google Scholar]
  9. G.D. Töpfer: Die Theorie und Praxis des Orgelbaus (The theory and practice of organ building). Bernhard Friedrich Voigt, Weimar, 1888. In German. [Google Scholar]
  10. F. Ingerslev, W. Frobenius: Some measurements of the end-corrections and acoustic spectra of cylindrical open flue organ pipes. Transactions of the Danish Academy of Technical Sciences 1, 3 (1947) 1–42. [Google Scholar]
  11. N.H. Fletcher: Sound production by organ flue pipes. Journal of the Acoustical Society of America 60 (1976) 1119–1132. http://dx.doi.org/10.1121/1.381174. [CrossRef] [Google Scholar]
  12. M.E. McIntyre, R.T. Schumacher, J. Woodhouse: On the oscillations of musical instruments. Journal of the Acoustical Society of America 74, 5 (1983) 1325–1345. http://dx.doi.org/10.1121/1.390157. [CrossRef] [Google Scholar]
  13. M.P. Verge, B. Fabre, W.E.A. Mahu, A. Hirschberg, R.R. van Hassel, A.P.J. Wijnands, J.J. de Vries, C.J. Hogendoorn: Jet formation and jet velocity fluctuations in a flue organ pipe. Journal of the Acoustical Society of America 95, 2 (1994) 1119–1132. http://dx.doi.org/10.1121/1.408460. [CrossRef] [Google Scholar]
  14. B. Fabre, J. Gilbert, A. Hirschberg, X. Pelorson: Aeroacoustics of musical instruments. Annual Review of Fluid Mechanics 44, 1 (2012) 1–25. http://dx.doi.org/10.1146/annurev-fluid-120710-101031. [Google Scholar]
  15. P.T. Nagy, P. Rucz, A. Szabó: Examination of jet growth and jet-drive in the recorder by means of linearized numerical and lumped models. Journal of Sound and Vibration 527 (2022) 116857. http://dx.doi.org/10.1016/j.jsv.2022.116857. [CrossRef] [Google Scholar]
  16. S. Dequand, J.F.H. Willems, M. Leroux, R. Vullings, M. van Weert, C. Thielout, A. Hirschberg: Simplified models of flue instruments: influence of mouth geometry on the sound source. Journal of the Acoustical Society of America 113, 3 (2003) 1724–1735. http://dx.doi.org/10.1121/1.1543929. [CrossRef] [PubMed] [Google Scholar]
  17. J. Angster, G. Paál, W. Garen, A. Miklós: Effect of voicing steps on the stationary spectrum and attack transient of a flue organ pipe, in: Proceedings of the International Symposium on Musical Acoustics. Institute of Acoustics, Edinburgh, Vol. 19, Part 5, Book 2, 1997, pp. 285–294. [Google Scholar]
  18. R. Janke: The secret of scaling. ISO Journal 49 (2015) 50–64. https://www.orgel-info.de/Mensuren.pdf. [Google Scholar]
  19. INNOSOUND – Innovative methods and tools for the sound design of organ pipes. Research project in the 7th Framework Program of the European Union; Research for SME (FP7-SME-2007-1), 2008–2010. Contract no: INNOSOUND-222104. [Google Scholar]
  20. P. Rucz, E. Esteve Fontestad, J. Angster, A. Miklós: An improved scaling method for wooden flue organ pipes, in: A. Astolfi, F. Asdrudali, L. Shtrepi (Eds) Forum Acusticum 2023: Proceedings of the 10th Convention of the European Acoustics Association, 2023, pp. 4447–4454. http://dx.doi.org/10.61782/fa.2023.0917. [Google Scholar]
  21. S. Tateishi, S. Iwagami, G. Tsutsumi, T. Kobayashi, T. Takami, K. Takahashi: Role of the foot chamber in the sounding mechanism of a flue organ pipe. Acoustical Science and Technology 40, 1 (2019) 29–39. http://dx.doi.org/10.1250/ast.40.29. [CrossRef] [Google Scholar]
  22. S. Ikoga, T. Onomata, R. Tabata, S. Iwagami, T. Kobayashi, K. Takahashi: Numerical study on a three-dimensional model of a flue organ pipe: relative phase between pipe and foot, and stability, in: A. Astolfi, F. Asdrudali, L. Shtrepi (Eds.) Forum Acusticum 2023: Proceedings of the 10th Convention of the European Acoustics Association, 2023, pp. 4439–4442. http://dx.doi.org/10.61782/fa.2023.0425. [Google Scholar]
  23. R. Caussé, J. Kergomard, X. Lurton, Input impedance of brass instruments – Comparison between experiment and numerical models. Journal of the Acoustical Society of America 75, 1 (1984) 241–254. http://dx.doi.org/10.1121/1.390402. [CrossRef] [Google Scholar]
  24. A.H. Benade: On the propagation of sound waves in a cylindrical conduit. Journal of the Acoustical Society of America 44, 2 (1968) 616–623. http://dx.doi.org/10.1121/1.1911130. [CrossRef] [Google Scholar]
  25. M. Berggren, A. Bernland, D. Noreland, Acoustic boundary layers as boundary conditions. Journal of Computational Physics 371 (2018) 633–650. http://dx.doi.org/10.1016/j.jcp.2018.06.005. [CrossRef] [Google Scholar]
  26. Mathworks Inc.: Documentation of lsqnonlin: solve nonlinear least-squares (nonlinear data-fitting) problems. Last accessed: 19 February, 2024. https://de.mathworks.com/help/optim/ug/lsqnonlin.html. [Google Scholar]
  27. I. Harari: Dispersion, pollution, and resolution, in: S. Marburg, B. Nolte (Eds.) Computational Acoustics of Noise Propagation in Fluids – Finite and Boundary Element Methods. Springer, Berlin, Chapter 1, 2008, 37–56. [CrossRef] [Google Scholar]
  28. Openwind: Python library assisting instrument makers. Last accessed: 23 September, 2024. https://openwind.inria.fr/. [Google Scholar]
  29. C. Geuzaine, J.-F. Remacle: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering 79, 11 (2009) 1309–1331. http://dx.doi.org/10.1002/nme.2579. [CrossRef] [Google Scholar]
  30. R.J. Astley, G.J. Macaulay, J.-P. Coyette, L. Cremers: Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering: Part I. Formulation in the frequency domain. Journal of the Acoustical Society of America 103 (1998) 49–63. http://dx.doi.org/10.1121/1.421106. [CrossRef] [Google Scholar]
  31. J. Angster, P. Rucz, A. Miklós: Acoustics of organ pipes and future trends in the research. Acoustics Today 13, 1 (2017) 12–20. [Google Scholar]
  32. S. Adachi: A simple model of cross-fingering explaining both pitch flattening and sharpening. Journal of the Acoustical Society of America 140, 4 (2016) 3426–3427. http://dx.doi.org/10.1121/1.4971029. [CrossRef] [Google Scholar]
  33. S. Adachi: Resonance modes of a flute with one open tone hole. Acoustical Science and Technology 38, 1 (2017) 14–22. [CrossRef] [Google Scholar]
  34. H. Außerlechner, T. Trommer, J. Angster, A. Miklós: Experimental jet velocity and edge tone investigations on a foot model of an organ pipe. Journal of the Acoustical Society of America 126, 2 (2009) 878–886. http://dx.doi.org/10.1121/1.3158935. [CrossRef] [PubMed] [Google Scholar]
  35. G. Paál, I. Vaik: Unsteady phenomena in the edge tone. International Journal of Heat and Fluid Flow 28 (2007) 575–586. http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.04.011. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.