Issue
Acta Acust.
Volume 9, 2025
Topical Issue - Vibroacoustics
Article Number 29
Number of page(s) 15
DOI https://doi.org/10.1051/aacus/2024065
Published online 25 June 2025
  1. S. Merz, R. Kinns, N. Kessissoglou: Structural and acoustic responses of a submarine hull due to propeller forces, Journal of Sound and Vibration 325, 1–2 (2009) 266–286. [CrossRef] [Google Scholar]
  2. S. Merz, N. Kessissoglou, R. Kinns, S. Marburg: Minimisation of the sound power radiated by a submarine through optimisation of its resonance changer, Journal of Sound and Vibration 329, 8 (2010) 980–993. [CrossRef] [Google Scholar]
  3. P. Williams, R. Kirby, M. Karimi: Sound power radiated from acoustically thick, fluid loaded, axisymmetric pipes excited by a central monopole, Journal of Sound and Vibration 527 (2022) 116843. [CrossRef] [Google Scholar]
  4. P. Williams, R. Kirby, M. Karimi: The effect of axial boundary conditions on breakout noise from finite cylindrical ducts, International Journal of Mechanical Sciences 242 (2023) 107951. [CrossRef] [Google Scholar]
  5. P. Gardonio, M. Brennan: On the origins and development of mobility and impedance methods in structural dynamics, Journal of Sound and Vibration 249 (2002) 557–573. [CrossRef] [Google Scholar]
  6. I. Wilken, W. Soedel: The receptance method applied to ring-stiffened cylindrical shells: analysis of modal characteristics, Journal of Sound and Vibration 44 (1976) 563–576. [CrossRef] [Google Scholar]
  7. L. Maxit, C. Yang, L. Cheng, J.-L. Guyader: Modeling of micro-perforated panels in a complex vibro-acoustic environment using patch transfer function approach, Journal of the Acoustical Society of America 131 (2012) 2118–2130. [CrossRef] [PubMed] [Google Scholar]
  8. M. Ouisse, L. Maxit, C. Cacciolati, J.-L. Guyader: Patch transfer functions as a tool to couple linear acoustic problems, Journal of Vibration and Acoustics 127 (2005) 458–466. [CrossRef] [Google Scholar]
  9. J. Rejlek, G. Veronesi, C. Albert, E. Nijman, A. Bocquillet: A combined computational-experimental approach for modelling of coupled vibro-acoustic problems, in: Tech. Rep., SAE Technical Paper, 2013. [Google Scholar]
  10. X. Yu, L. Cheng, J.-L. Guyader: Modeling vibroacoustic systems involving cascade open cavities and micro-perforated panels, Journal of the Acoustical Society of America 136 (2014) 659–670. [CrossRef] [PubMed] [Google Scholar]
  11. V. Meyer, L. Maxit, J.-L. Guyader, T. Leissing: Prediction of the vibroacoustic behavior of a submerged shell with non-axisymmetric internal substructures by a condensed transfer function method, Journal of Sound and Vibration 360 (2016) 260–276. [CrossRef] [Google Scholar]
  12. V. Meyer, L. Maxit, C. Audoly: A substructuring approach for modeling the acoustic scattering from stiffened submerged shells coupled to non-axisymmetric internal structures, Journal of the Acoustical Society of America 140 (2016) 1609–1617. [CrossRef] [PubMed] [Google Scholar]
  13. F. Dumortier: Principle of vibroacoustic subtractive modelling and application to the prediction of the acoustic radiation of partially coated submerged cylindrical shells. PhD thesis, INSA de Lyon, 2021. [Google Scholar]
  14. F. Dumortier, V. Meyer, L. Maxit: Scattering from a partially coated shell immersed in water using a subtractive modelling technique, Journal of Theoretical and Computational Acoustics 31 (2023) 2350020. [CrossRef] [Google Scholar]
  15. L. Chen, X. Liang, H. Yi: Vibro-acoustic characteristics of cylindrical shells with complex acoustic boundary conditions, Ocean Engineering 126 (2016) 12–21. [CrossRef] [Google Scholar]
  16. W. Guo, T. Li, X. Zhu, Y. Miao: Sound-structure interaction analysis of an infinite-long cylindrical shell submerged in a quarter water domain and subject to a line-distributed harmonic excitation, Journal of Sound and Vibration 422 (2018) 48–61. [CrossRef] [Google Scholar]
  17. A. Marsick, G.S. Sharma, D. Eggler, L. Maxit, V. Meyer, N. Kessissoglou: On the vibro-acoustic response of a cylindrical shell submerged near a free sea surface, Journal of Sound and Vibration 511 (2021) 116359. [CrossRef] [Google Scholar]
  18. J. Kha, M. Karimi, L. Maxit, A. Skvortsov, R. Kirby: Forced vibroacoustic response of a cylindrical shell in an underwater acoustic waveguide, Ocean Engineering 273 (2023) 113899. [CrossRef] [Google Scholar]
  19. L. Maxit, J.-M. Ginoux: Sound radiated by a submerged irregularly ribbed shell: the circumferential admittance approach, Journal of the Acoustical Society of America 128 (2010) 127–151. [Google Scholar]
  20. Maxit L.: Scattering model of a cylindrical shell with internal axisymmetric frames by using the circumferential admittance approach, Applied Acoustics 80 (2014) 10–22. [CrossRef] [Google Scholar]
  21. F. Dumortier, L. Maxit, V. Meyer: Vibroacoustic subtractive modeling using a reverse condensed transfer function approach, Journal of Sound and Vibration 499 (2021) 115982. [CrossRef] [Google Scholar]
  22. C. Marchetto, L. Maxit, O. Robin, A. Berry: Vibroacoustic response of panels under diffuse acoustic field excitation from sensitivity functions and reciprocity principles, Journal of the Acoustical Society of America 141 (2017) 4508–4521. [CrossRef] [PubMed] [Google Scholar]
  23. F.J. Fahy: Some applications of the reciprocity principle in experimental vibroacoustics, Acoustical Physics 49 (2003) 217–229. [CrossRef] [Google Scholar]
  24. J.-D. Chazot, J.-L. Guyader: Prediction of transmission loss of double panels with a patch-mobility method, Journal of the Acoustical Society of America 121, 1 (2007) 267–278. [CrossRef] [Google Scholar]
  25. M. Aucejo, L. Maxit, N. Totaro, J.-L. Guyader: Convergence acceleration using the residual shape technique when solving structure–acoustic coupling with the patch transfer functions method, Computers & Structures 88 (2010) 728–736. [CrossRef] [Google Scholar]
  26. L. Maxit, M. Aucejo, J.-L. Guyader: Improving the patch transfer function approach for fluid-structure modelling in heavy fluid, Journal of Vibration and Acoustics 134 (2012) 051011. [CrossRef] [Google Scholar]
  27. A.W. Leissa: Vibration of Shells. NASA SP. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington DC, 1993. [Google Scholar]
  28. M. Abramowitz, I.A. Stegun: Handbook of mathematical functions. Dover Publications, New York, 1970. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.