Issue |
Acta Acust.
Volume 9, 2025
Topical Issue - Musical Acoustics: Latest Advances in Analytical, Numerical and Experimental Methods Tackling Complex Phenomena in Musical Instruments
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/aacus/2024080 | |
Published online | 07 January 2025 |
- C.M. Hutchins: The acoustics of violin plates. Scientific American 245, 4 (1981) 170–187. [CrossRef] [Google Scholar]
- G.A. Knott: A modal analysis of the violin using MSC/NASTRAN and PATRAN. PhD thesis, 1987, Monterey, Naval Postgraduate School. [Google Scholar]
- C. Gough: Violin plate modes. The Journal of the Acoustical Society of America 137, 1 (2015) 139–153. [CrossRef] [PubMed] [Google Scholar]
- J.A. Torres, C.A. Soto, D. Torres-Torres: Exploring design variations of the Titian Stradivari violin using a finite element model. The Journal of the Acoustical Society of America 148, 3 (2020) 1496–1506. [CrossRef] [PubMed] [Google Scholar]
- R. Viala, V. Placet, S. Cogan: Identification of the anisotropic elastic and damping properties of complex shape composite parts using an inverse method based on finite element model updating and 3D velocity fields measurements (FEMU-3DVF): application to bio-based composite violin soundboards. Composites Part A: Applied Science and Manufacturing 106 (2018) 91–103. [CrossRef] [Google Scholar]
- S. Gonzalez, D. Salvi, F. Antonacci, A. Sarti: Eigenfrequency optimisation of free violin plates. The Journal of the Acoustical Society of America 149, 3 (2021) 1400–1410. [CrossRef] [PubMed] [Google Scholar]
- D.S. Limón, J.H. Rentería, J.A. Torres: Application to visualize simultaneous vibrations of plates and ribs in a violin. The Journal of the Acoustical Society of America 150 (2021) 1088–1091. [CrossRef] [PubMed] [Google Scholar]
- Z.G. Córdova, D.S. Limón, J.A. Torres: Speckle interference for naked-eye detection of vibrations. European Journal of Physics 45 (2024) 035005. [CrossRef] [Google Scholar]
- J.A. Torres: Differences in violin sounds caused by changes on arching profiles. Revista Mexicana de Física 70 (2024) 031002-1. [Google Scholar]
- S. Gonzalez, D. Salvi, D. Baeza, F. Antonacci, A. Sarti: A data-driven approach to violin making. Scientific Reports 11, 1 (2021) 9455. [CrossRef] [PubMed] [Google Scholar]
- R. Viala, J. Cabaret, M. Sedighi-Gilani, V. Placet, S. Cogan: Effect of indented growth rings on spruce wood mechanical properties and subsequent violin dynamics. Holzforschung 78 (2024) 189–201. [CrossRef] [Google Scholar]
- C. Fritz, G. Stoppani, U. Igartua, R.J. Rico: Ander Arroitajauregi, and Luis Artola. The Bilbao project: how violin makers match backs and tops to produce particular sorts of violins, in: International Symposium on Music Acoustics, ISMA 2019, Detmold, Germany, 13–17 September, 2019. [Google Scholar]
- B.C. Stoel, T.M. Borman: A comparison of wood density between classical Cremonese and modern violins. PLoS One 3, 7 (2008) e2554. [CrossRef] [PubMed] [Google Scholar]
- M. Pyrkosz: Reverse engineering the structural and acoustic behavior of a Stradivari violin. PhD thesis, Michigan Technological University, Houghton, MI, 2013. [Google Scholar]
- Ö. Akar, K. Willner: The modal behaviour of a violin corpus. Journal of New Music Research 52, 2–3 (2023) 139–160. [CrossRef] [Google Scholar]
- N. Fletcher, T. Rossing: The physics of musical instruments, Springer-Verlag, New York, 1991. [CrossRef] [Google Scholar]
- D.J. Ewins: Modal testing, theory, practice, and application. 2nd edn., Research Studies Press, Baldock, 2000. [Google Scholar]
- J.B. Fahnline, R.L. Campbell, S.A. Hambric: Modal analysis using the singular value decomposition. Technical Report 04–008, Pennsylvania State University, University Park, PA, 2004. [Google Scholar]
- R. Viala, V. Placet, S. Le Conte, S. Vaiedelich, S. Cogan: Model-based decision support methods applied to the conservation of musical instruments: application to an antique cello, in: R. Barthorpe (Ed.), Model validation and uncertainty quantification, 3rd edn., Springer, Cham, 2020. [Google Scholar]
- I. Brémaud, J. Gril, B. Thibaut: Anisotropy of wood vibrational properties: dependence on grain angle and review of literature data. Wood Science and Technology 45 (2011) 735–754. [CrossRef] [Google Scholar]
- A.J. Panshin, C. de Zeeuw: Textbook of wood technology, McGraw-Hill Book Co., New York, 1980. [Google Scholar]
- R. Viala, V. Placet, S. Cogan: Simultaneous non-destructive identification of multiple elastic and damping properties of spruce tonewood to improve grading. Journal of Cultural Heritage 42 (2020) 108–116. [CrossRef] [Google Scholar]
- R. Romain Viala: Towards a model-based decision support tool for stringed musical instruments making. PhD thesis, Thèse de doctorat dirigée par Cogan, Scott et Placet, Vincent Mécanique Bourgogne Franche-Comté, 2018. [Google Scholar]
- R. Viala, S. Lämmlein, V. Placet, S. Cogan: Model-based quantification of the effect of wood modifications on the dynamics of the violin, in: International Symposium on Music Acoustics, ISMA 2019, Detmold, Germany, 13–17 September, 2019. [Google Scholar]
- W.T. Simpson: Predicting equilibrium moisture content of wood by mathematical models. Wood and Fiber Science 5 (1973) 41–49. [Google Scholar]
- J. McLennan: The Lucchi meter: measuring the acoustical properties of violin woods. Available at https://www.phys.unsw.edu.au/music/publications/mclennan/lucchi.pdf (accessed April 11, 2024), 2023. [Google Scholar]
- Lucchimeter: https://www.lucchicremona.com/portal/tecnologie/lucchimeter/ (accessed April 11, 2024), 2023. [Google Scholar]
- L. Jost: Measuring speed of sound in the violin maker’s workshop through longitudinal standing waves: a simple alternative method. Proceedings of Meetings on Acoustics 49, 1 (2023) 035009. [Google Scholar]
- P.J. Frey, H. Borouchaki: Surface mesh quality evaluation. International Journal for Numerical Methods in Engineering 45, 1 (1999) 101–118. [CrossRef] [Google Scholar]
- D. Guitard, F. El Amri: Modèles prévisionnels de comportement élastique tridimensionnel pour les bois feuillus et les bois résineux. Annales des Sciences Forestières 44, 3 (1987) 335–358. [CrossRef] [EDP Sciences] [Google Scholar]
- T. Sjökvist, Å. Blom, M.E.P. Wålinder: The influence of heartwood, sapwood and density on moisture fluctuations and crack formations of coated Norway spruce in outdoor exposure. Journal of Wood Science 65, 1 (2019) 45. [CrossRef] [Google Scholar]
- C. Carlier, A. Alkadri, J. Gril, I. Brémaud: Revisiting the notion of “resonance wood” choice: a decompartementalised approach from violin makers’ opinion and perception to characterization of material properties’ variability, in: M.A. Pérez, E. Marconi (Eds.), Wooden Musical instruments: different forms of knowledge. Book of end of WoodMusICK COST Action FP1302, Philarmonie de Paris, Paris, France, 2019, pp. 119–142. [Google Scholar]
- R. Viala, V. Placet, S. Cogan: Simultaneous non-destructive identification of multiple elastic and damping properties of spruce tonewood to improve grading. Journal of Cultural Heritage 42 (2020) 108–116. [CrossRef] [Google Scholar]
- J.E. Mottershead, M.I. Friswell: Model updating in structural dynamics: a survey. Journal of Sound and Vibration 167, 2 (1993) 347–375. [CrossRef] [Google Scholar]
- M. Pastor, M. Binda, T. Harčarik: Modal assurance criterion. Procedia Engineering 48 (2012) 543–548. [CrossRef] [Google Scholar]
- R.J. Allemang, D.L. Brown: A correlation coefficient for modal vector analysis, in: Proceedings of the 1st International Modal Analysis Conference Orlando, FL, 8–10 November, Union College, Schenectady, New York, 1982, pp. 110–116. [Google Scholar]
- G. Dai, G. Ji: Impacts of the weight coefficient and modal assurance criterion of large structures on observation station selection and optimization. Journal of Vibroengineering 20, 1 (2018) 503–518. [CrossRef] [Google Scholar]
- I. Brémaud, J. Ruelle, A. Thibaut, B. Thibaut: Changes in viscoelastic vibrational properties between compression and normal wood: roles of microfibril angle and of lignin. Holzforschung 67, 1 (2013) 75–85. [CrossRef] [Google Scholar]
- E. Fabisiak, P. Mania: Variation in the microfibril angles in resonance and non-resonance spruce wood (Picea abies [L.] Karst.). BioResources 11, 4 (2016) 8496–8508. [CrossRef] [Google Scholar]
- L. Salmén: Viscoelastic properties of in situ lignin under water-saturated conditions. Journal of Materials science 19 (1984) 3090–3096. [CrossRef] [Google Scholar]
- A. Piacsek, S. Lowery: Experimental uncertainty in measurements of violin impulse response, in: Proceedings of the 10th Convention of the European Acoustics Association, Turin, Italy, 11–15th September, 2023. [Google Scholar]
- M.I. Friswell, J.E. Mottershead: Model updating using dynamic test data. Journal of Sound and Vibration 167, 2 (1995) 347–375. [Google Scholar]
- N.M.M. Maia, J.M.M. Silva, J. Montalvão e Silva: Extrapolating dynamic behavior from experimental modal data. Mechanical Systems and Signal Processing 17, 1 (2003) 179–194. [CrossRef] [Google Scholar]
- J.E. Mottershead, M. Link, M.I. Friswell: Finite element model updating using experimental data and sensitivity analysis. Mechanical Systems and Signal Processing 25, 7 (2011) 2275–2296. [CrossRef] [Google Scholar]
- H. Owhadi, C. Scovel, T.J. Sullivan, M.M. McKerns, M. Ortiz: A general framework for model validation and extrapolation in scientific computing. SIAM Review 55, 2 (2013) 271–345. [CrossRef] [Google Scholar]
- W.L. Oberkampf, C.J. Roy: Verification and validation in scientific computing, Cambridge University Press, 2010. [CrossRef] [Google Scholar]
- C. Gough: Finite element modeling of violins: accuracy and sensitivity of modal analysis. The Journal of the Acoustical Society of America 133, 4 (2013) 2268–2278. [Google Scholar]
- M. Spycher, F.W. Schwarze, R. Steiger: Assessment of resonance wood quality by comparing its physical and histological properties. Wood Science and Technology 42 (2008) 325–342. [CrossRef] [Google Scholar]
- A. Chaigne, J. Kergomard: Acoustique des instruments de musique, Belin, 2008. [Google Scholar]
- M.E. McIntyre, J. Woodhouse: On measuring the elastic and damping constants of orthotropic sheet materials. Acta Metallurgica 36, 6 (1988) 1397–1416. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.