Issue |
Acta Acust.
Volume 9, 2025
Topical Issue - Numerical, computational and theoretical acoustics
|
|
---|---|---|
Article Number | 3 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/aacus/2024044 | |
Published online | 13 January 2025 |
- S. Schoder, M. Kaltenbacher: Hybrid aeroacoustic computations: State of art and new achievements, Journal of Theoretical and Computational Acoustics 27, 04 (2019) 1950020. [Google Scholar]
- T. Okuzono, T. Otsuru, R. Tomiku, N. Okamoto: Fundamental accuracy of time domain finite element method for sound-field analysis of rooms, Applied Acoustics 71, 10 (2010) 940–946. [CrossRef] [Google Scholar]
- T. Yoshida, T. Okuzono, K. Sakagami: A parallel dissipation-free and dispersion-optimized explicit time-domain fem for large-scale room acoustics simulation, Buildings 12, 2 (2022) 105. [CrossRef] [Google Scholar]
- S. van Ophem, E. Deckers, W. Desmet: Model based virtual intensity measurements for exterior vibro-acoustic radiation, Mechanical Systems and Signal Processing 134 (2019) 106315. [CrossRef] [Google Scholar]
- Y. Cai, S. van Ophem, W. Desmet, E. Deckers: Model order reduction of time-domain vibro-acoustic finite element simulations with admittance boundary conditions for virtual sensing applications, Mechanical Systems and Signal Processing 205 (2023) 110847. [CrossRef] [Google Scholar]
- D. Mayrhofer, M. Kaltenbacher: A new method for sound generation based on digital sound reconstruction, Journal of Theoretical and Computational Acoustics 29 (2021) 2150021. [CrossRef] [Google Scholar]
- H. Wang, J. Yang, M. Hornikx: Frequency-dependent transmission boundary condition in the acoustic time-domain nodal discontinuous Galerkin model, Applied Acoustics 164 (2020) 107280. [CrossRef] [Google Scholar]
- M. Toyoda, S. Ishikawa: Frequency-dependent absorption and transmission boundary for the finite-difference time-domain method, Applied Acoustics 145 (2019) 159–166. [CrossRef] [Google Scholar]
- Y. Özyörük, L.N. Long: A time-domain implementation of surface acoustic impedance condition with and without flow, Journal of Computational Acoustics 5, 3 (1997) 277–296. [CrossRef] [Google Scholar]
- Y. Özyörük, L.N. Long, M.G. Jones: Time-domain numerical simulation of a flow-impedance tube, Journal of Computational Physics 146, 1 (1998) 29–57. [CrossRef] [Google Scholar]
- S. Zheng, M. Zhuang, Verification and validation of time domain impedance boundary condition in lined ducts, AIAA Journal 43, 2 (2005) 306–313. [CrossRef] [Google Scholar]
- J. Bin, M. Yousuff Hussaini, S. Lee: Broadband impedance boundary conditions for the simulation of sound propagation in the time domain, Journal of the Acoustical Society of America 125, 2 (2009) 664–675. [CrossRef] [PubMed] [Google Scholar]
- R. Troian, D. Dragna, C. Bailly, M.-A. Galland: Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow, Journal of Sound and Vibration 392 (2017) 200–216. [CrossRef] [Google Scholar]
- C. Chen, X. Li: Numerical efficiency analysis of multi-pole time-domain impedance boundary conditions, in 8th European Conference for Aeronautics and Space Sciences, Madrid, Spain, July 1–4, 2019. [Google Scholar]
- R. Fiévet, H. Deniau, E. Piot: Strong compact formalism for characteristic boundary conditions with discontinuous spectral methods, Journal of Computational Physics 408 (2020) 109276. [CrossRef] [Google Scholar]
- F.Q. Hu, D.M. Nark: On the implementation and further validation of a time domain boundary element method broadband impedance boundary condition (AIAA 2022-2898), in 28th AIAA/CEAS Aeroacoustics 2022 Conference, Southampton, UK, June 14–17, 2022. [Google Scholar]
- M. Shur, M. Strelets, A. Travin, T. Suzuki, R. Spalart: Unsteady simulation of sound propagation in turbulent flow inside a lined duct using a broadband time-domain impedance model (AIAA 2020-2535), in AIAA AVIATION 2020 FORUM, Virtual event, 15–19 June, 2020. [Google Scholar]
- M. Shur, M. Strelets, A. Travin, T. Suzuki, P.R Spalart: Unsteady simulations of sound propagation in turbulent flow inside a lined duct, AIAA Journal 59, 8 (2021) 3054–3070. [Google Scholar]
- D. Diab, D. Dragna, E. Salze, M.-A. Galland: Nonlinear broadband time-domain admittance boundary condition for duct acoustics. Application to perforated plate liners, Journal of Sound and Vibration 528 (2022) 116892. [CrossRef] [Google Scholar]
- D. Dragna, P. Pineau, P. Blanc-Benon: A generalized recursive convolution method for time-domain propagation in porous media, Journal of the Acoustical Society of America 138, 2 (2015) 1030–1042. [CrossRef] [PubMed] [Google Scholar]
- H. Wang, M. Hornikx: Broadband time-domain impedance boundary modeling with the discontinuous Galerkin method for room acoustics simulations, in M. Ochmann, V. Michael, J. Fels (Eds.), Proceedings of the 23rd International Congress on Acoustics, 2019: integrating 4th EAA Euroregio 2019, Deutsche Gesellschaft für Akustik, Berlin, Germany, 2019, pp. 779–786. [Google Scholar]
- H. Wang, M. Hornikx: Time-domain impedance boundary condition modeling with the discontinuous Galerkin method for room acoustics simulations, Journal of the Acoustical Society of America 147, 4 (2020) 2534–2546. [CrossRef] [PubMed] [Google Scholar]
- R.J. Luebbers, F. Hunsberger: FDTD for Nth-order dispersive media, IEEE Transactions on Antennas and Propagation 40, 11 (1992) 1297–1301. [CrossRef] [Google Scholar]
- D.F. Kelley, R.J. Luebbers: Piecewise linear recursive convolution for dispersive media using FDTD, IEEE Transactions on Antennas and Propagation 44, 6 (1996) 792–797. [CrossRef] [Google Scholar]
- R. Siushansian, J. LoVetri: Efficient evaluation of convolution integrals arising in FDTD formulations of electromagnetic dispersive media, Journal of electromagnetic waves and applications 11, 1 (1997) 101–117. [CrossRef] [Google Scholar]
- Y. Reymen, M. Baelmans, W. Desmet: Time-domain impedance formulation based on recursive convolution (AIAA 2006–2685), in 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), Cambridge, MA, USA, 8–10 May, 2006. [Google Scholar]
- Y. Reymen, M. Baelmans, W. Desmet: Efficient implementation of tam and auriault’s time-domain impedance boundary condition, AIAA Journal 46, 9 (2008) 2368–2376. [CrossRef] [Google Scholar]
- B. Cotté, C. Blanc-Benon, F. Poisson: Time-domain impedance boundary conditions for simulations of outdoor sound propagation, AIAA Journal 47 (2009) 10. [Google Scholar]
- M. Miller III, S. van Ophem, E. Deckers, W. Desmet: Time-domain impedance boundary conditions for acoustic reduced order finite element simulations, Computer Methods in Applied Mechanics and Engineering 387 (2021) 114173. [CrossRef] [Google Scholar]
- B. Van den Nieuwenhof, J.-P. Coyette: Treatment of frequency-dependent admittance boundary conditions in transient acoustic finite/infinite-element models, Journal of the Acoustical Society of America 110, 4 (2001) 1743–1751. [CrossRef] [PubMed] [Google Scholar]
- Z. Fellah, C. Depollier: Transient acoustic wave propagation in rigid porous media: a time-domain approach, Journal of the Acoustical Society of America 107, 2 (2000) 683–688. [CrossRef] [PubMed] [Google Scholar]
- D.K. Wilson, V.E. Ostashev, S.L. Collier: Time-domain equations for sound propagation in rigid-frame porous media (L), Journal of the Acoustical Society of America 116, 4 (2004) 1889–1892. [CrossRef] [Google Scholar]
- O. Umnova, D. Turo: Time domain formulation of the equivalent fluid model for rigid porous media, Journal of the Acoustical Society of America 125, 4 (2009) 1860–1863. [CrossRef] [PubMed] [Google Scholar]
- D.L. Johnson, J. Koplik, R. Dashen: Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of Fluid Mechanics 176 (1987) 379–402. [Google Scholar]
- Y. Champoux, J.-F. Allard: Dynamic tortuosity and bulk modulus in air-saturated porous media, Journal of applied physics 70, 4 (1991) 1975–1979. [CrossRef] [Google Scholar]
- D. Lafarge, P. Lemarinier, J.F. Allard, V. Tarnow: Dynamic compressibility of air in porous structures at audible frequencies, The Journal of the Acoustical Society of America 102, 4 (1997) 1995–2006. [CrossRef] [Google Scholar]
- J. Zhao, M. Bao, X. Wang, H. Lee, S. Sakamoto: An equivalent fluid model based finite-difference time-domain algorithm for sound propagation in porous material with rigid frame, Journal of the Acoustical Society of America 143, 1 (2018) 130–138. [CrossRef] [PubMed] [Google Scholar]
- J. Zhao, Z. Chen, M. Bao, H. Lee, S. Sakamoto: Two-dimensional finite-difference time-domain analysis of sound propagation in rigid-frame porous material based on equivalent fluid model, Applied Acoustics 146 (2019) 204–212. [CrossRef] [Google Scholar]
- J. Zhao, Z. Chen, M. Bao, S. Sakamoto: Prediction of sound absorption coefficients of acoustic wedges using finite-difference time-domain analysis, Applied Acoustics 155 (2019) 428–441. [CrossRef] [Google Scholar]
- C. Bellis, B. Lombard: Simulating transient wave phenomena in acoustic metamaterials using auxiliary fields, Wave Motion 86 (2019) 175–194. [CrossRef] [Google Scholar]
- A. Alomar, D. Dragna, M.-A. Galland: Pole identification method to extract the equivalent fluid characteristics of general sound-absorbing materials, Applied Acoustics 174 (2021) 107752. [CrossRef] [Google Scholar]
- A. Alomar, D. Dragna, M.-A. Galland: Time-domain simulations of sound propagation in a flow duct with extended-reacting liners, Journal of Sound and Vibration 507 (2021) 116137. [CrossRef] [Google Scholar]
- I. Moufid, D. Matignon, R. Roncen, E. Piot: Energy analysis and discretization of the time-domain equivalent fluid model for wave propagation in rigid porous media, Journal of Computational Physics 451 (2022) 110888. [CrossRef] [Google Scholar]
- H. Wang, M. Hornikx: Extended reacting boundary modeling of porous materials with thin coverings for time-domain room acoustic simulations, Journal of Sound and Vibration 548 (2023) 117550. [CrossRef] [Google Scholar]
- T. Yoshida, T. Okuzono, K. Sakagami: Time-domain finite element formulation of porous sound absorbers based on an equivalent fluid model, Acoustical Science and Technology 41, 6 (2020) 837–840. [CrossRef] [Google Scholar]
- S. Rienstra: Impedance models in time domain, including the extended Helmholtz resonator model (AIAA 2006–2686), in 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, MA, USA, 8–10 May, 2006. [Google Scholar]
- D. Dragna, P. Blanc-Benon: Physically admissible impedance models for time-domain computations of outdoor sound propagation, Acta Acustica united with Acustica 100, 3 (2014) 401–410. [CrossRef] [Google Scholar]
- S.J. Schoder: Aeroacoustic analogies based on compressible flow data, PhD thesis, Technische Universität Wien, 2018. [Google Scholar]
- B. Abdulkareem, J.- Bérenger, F. Costen, R. Himeno, H. Yokota: An operator absorbing boundary condition for the absorption of electromagnetic waves in dispersive media, IEEE Transactions on Antennas and Propagation 66, 4 (2018) 2147–2150. [CrossRef] [Google Scholar]
- J.- Bérenger: On the huygens absorbing boundary conditions for electromagnetics, Journal of Computational Physics 226, 1 (2007) 354–378. [CrossRef] [Google Scholar]
- V. Vinoles, Problèmes d’interface en présence de métamatériaux: modélisation, analyse et simulations, PhD thesis, Université Paris-Saclay (ComUE), 2016. [Google Scholar]
- M. Kaltenbacher: Numerical simulation of mechatronic sensors and actuators: finite elements for computational multiphysics. 3rd edn., Springer, Berlin, Heidelberg, 2015. [Google Scholar]
- S. Schoder, P. Maurerlehner: Metamat 01: A semi-analytic solution for benchmarking wave propagation simulations of homogeneous absorbers in 1D/3D and 2D, ArXiv preprint, 2024. https://doi.org/10.48550/arXiv.2403.03510. [Google Scholar]
- S. Schoder, K. Roppert: openCFS: Open source finite element software for coupled field simulation-part acoustics, ArXiv preprint, 2022. https://doi.org/10.48550/arXiv.2207.04443. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.