Open Access
Issue |
Acta Acust.
Volume 9, 2025
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 14 | |
Section | Acoustic Materials and Metamaterials | |
DOI | https://doi.org/10.1051/aacus/2025007 | |
Published online | 07 March 2025 |
- D. Tallarico, A. Bergamini, B. Van Damme: Long-range order Bragg scattering and its effect on the dynamic response of a Penrose-like phononic crystal plate. Physical Review B 107 (2023)174201. [CrossRef] [Google Scholar]
- H. Xiang, Z. Chai, W. Kou, H. Zhong, J. Xiang: An investigation of the energy harvesting capabilities of a novel three-dimensional super-cell phononic crystal with a local resonance structure. Sensors 24 (2024)361. [CrossRef] [PubMed] [Google Scholar]
- S. Yang, Y. Liu, T. Liang: Band structures in the nematic elastomers phononic crystals. Physica B: Condensed Matter 506 (2017) 55-64. [CrossRef] [Google Scholar]
- K.Y. Lee, W. Jeon: Hierarchical phononic crystals for filtering multiple target frequencies of ultrasound. Scientific Reports 10 (2020)8070. [CrossRef] [PubMed] [Google Scholar]
- Z.-G. Chen, J. Zhao, J. Mei, Y. Wu: Acoustic frequency filter based on anisotropic topological phononic crystals. Scientific Reports 7 (2017)15005. [CrossRef] [PubMed] [Google Scholar]
- S. Yang, X. Zhou, Y.-F. Wang: Tunable band gap and wave guiding in periodic grid structures with thermal sensitive materials. Composite Structures 290 (2022)115536. [CrossRef] [Google Scholar]
- S. Yang, X.-L. Zhou, C.-Q. Li, S.-K. Zhang: Geometry optimization for tunable band gap and wave guiding in periodic grid structures. Modern Physics Letters B 35 (2021)2150508. [CrossRef] [Google Scholar]
- S. Yang, L. Chang-Qing, L. Hong-Ju, W. Yan-Feng:Negative refraction and guided waves in fluid-solid phononic crystals. Journal of Harbin Engineering University 43 (2022) 1370–1375. [Google Scholar]
- X.-L. Zhou, S. Yang, J.-R. Li, Z.-G. Bian, Y.-L. Shi: A tunable planar acoustic waveguide based on non-uniform period thermal fields. Modern Physics Letters B 37 (2023)2350152. [CrossRef] [Google Scholar]
- N.F. Declercq: Rayleigh angle incident ultrasonic beam shape design influence on reflected beam. Acta Acustica 7 (2023)41. [CrossRef] [EDP Sciences] [Google Scholar]
- G. Yin, P. Li, X. Yang, Y. Tian, J. Han, W. Ren, J. Guo: Characteristics and mechanism of coupling effects in parallel-cladded acoustic waveguides. Acta Acustica 6 (2022)8. [CrossRef] [EDP Sciences] [Google Scholar]
- X.-L. Zhou, J.-H. Yin, K. Wang, S. Yang, L. Cao, P.-Y. Guo: Band gap tuning and wave separator design in 3d composite slab structures based on periodic thermal fields. Mechanics of Advanced Materials Structures (2024) 1–9. [Google Scholar]
- Z. Bian, S. Yang, X. Zhou, D. Hui: Band gap manipulation of viscoelastic functionally graded phononic crystal. Nanotechnology Reviews 9 (2020) 515–523. [CrossRef] [Google Scholar]
- T.-X. Ma, Q.-S. Fan, C. Zhang, Y.-S. Wang: Flexural wave energy harvesting by the topological interface state of a phononic crystal beam. Extreme Mechanics Letters 50 (2022)101578. [CrossRef] [Google Scholar]
- X.-L. Tang, T.-X. Ma, Y.-S. Wang: Topological rainbow trapping and acoustic energy amplification in two-dimensional gradient phononic crystals. Applied Physics Letters 122 (2023)112201. [CrossRef] [Google Scholar]
- T.-X. Ma, Z.-Y. Li, C. Zhang, Y.-S. Wang: Energy harvesting of Rayleigh surface waves by a phononic crystal Luneburg lens. International Journal of Mechanical Sciences 227 (2022)107435. [CrossRef] [Google Scholar]
- J. Xiao, X. Ding, W. Huang, Q. He, Y. Shao: Rotating machinery weak fault features enhancement via line-defect phononic crystal sensing. Mechanical Systems Signal Processing 220 (2024)111657. [CrossRef] [Google Scholar]
- F. Ciampa, A. Mankar, A. Marini: Phononic crystal waveguide transducers for nonlinear elastic wave sensing. Scientific Reports 7 (2017)14712. [CrossRef] [PubMed] [Google Scholar]
- Z.A. Zaky, M. Mohaseb, A.S. Hendy, A.H. Aly: Design of phononic crystal using open resonators as harmful gases sensor. Scientific Reports 13 (2023)9346. [CrossRef] [PubMed] [Google Scholar]
- T. Zhu, T.-T. Wang, H.-T. Zhou, Y.-F. Wang, Y.-S. Wang: Reconfigurable phononic crystal sensor for liquid detection. Smart Materials and Structures 33 (2024)035016. [CrossRef] [Google Scholar]
- J.O. Vasseur, P.A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, D. Prevost: Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Physical Review Letters 86 (2001)3012. [CrossRef] [PubMed] [Google Scholar]
- Y. Pennec, B. Djafari-Rouhani: Fundamental properties of phononic crystal. Phononic Crystals (2016) 23–50. [CrossRef] [Google Scholar]
- S. Yang, Y. Liu: Effects of thermo-order-mechanical coupling on band structures in liquid crystal nematic elastomer porous phononic crystals. Ultrasonics 88 (2018) 193–206. [CrossRef] [PubMed] [Google Scholar]
- Y. Wang, X. Xu, L. Li: Advances in tunable bandgaps of piezoelectric phononic crystals. Materials 16 (2023)6285. [CrossRef] [PubMed] [Google Scholar]
- S.V. Valappil, A.M. Aragón, H. Goosen: Phononic crystals’ band gap manipulation via displacement modes. Solid State Communications 361 (2023)115061. [CrossRef] [Google Scholar]
- N. Roth, A.L. Goodwin: Tuning electronic and phononic states with hidden order in disordered crystals. Nature Communications 14 (2023)4328. [CrossRef] [PubMed] [Google Scholar]
- L.M. Weituschat, I. Castro, I. Colomar, C. Everly, P.A. Postigo, D. Ramos: Exploring regenerative coupling in phononic crystals for room temperature quantum optomechanics. Scientific Reports 14 (2024)12330. [CrossRef] [PubMed] [Google Scholar]
- T.-Y. Fang, X.-W. Sun, X.-D. Wen, Y.-X. Li, X.-X. Liu, T. Song, Y.-Z. Song, Z.-J. Liu: High-performance phononic crystal sensing structure for acetone solution concentration sensing. Scientific Reports 13 (2023)7057. [CrossRef] [PubMed] [Google Scholar]
- Y. Ruan, X. Liang: 2D phononic-crystal Luneburg lens for all-angle underwater sound localization. Acta Acustica 6 (2022)12. [CrossRef] [EDP Sciences] [Google Scholar]
- N.-K. Kuo, G. Piazza: Fractal phononic crystals in aluminum nitride: an approach to ultra high frequency bandgaps. Applied Physics Letters 99 (2011)163501. [CrossRef] [Google Scholar]
- X.-J. Liu, Y.-H. Fan: Band structure characteristics of T-square fractal phononic crystals. Chinese Physics B 22 (2013)036101. [CrossRef] [Google Scholar]
- K. Wang, Y. Liu, T. Liang: Band structures in Sierpinski triangle fractal porous phononic crystals. Physica B: Condensed Matter 498 (2016) 33–42. [CrossRef] [Google Scholar]
- J. Huang, Z. Shi, W. Huang: Multiple band gaps of phononic crystals with quasi-Sierpinski carpet unit cells. Physica B: Condensed Matter 516 (2017) 48–54. [CrossRef] [Google Scholar]
- Q. Wei, J. Xiang, W. Zhu, H. Hu: WBEM-based analysis of band structures of solid-solid and fluid-fluid phononic crystals with frequency-independent fundamental solutions. Engineering Analysis with Boundary Elements 151 (2023) 439–456. [CrossRef] [Google Scholar]
- Y.-J. Xin, P.-C. Cai, P. Li, Y. Qun, Y.-T. Sun, D. Qian, S.-L. Cheng, Q.-X. Zhao: Comprehensive analysis of band gap of phononic crystal structure and objective optimization based on genetic algorithm. Physica B: Condensed Matter 667 (2023)415157. [CrossRef] [Google Scholar]
- X. Wen, L. Kang, X. Sun, T. Song, L. Qi, Y. Cao: Topological design of two-dimensional phononic crystals based on genetic algorithm. Materials 16 (2023) 5606. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.