Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 48
Number of page(s) 21
Section Auditory Quality of Systems
DOI https://doi.org/10.1051/aacus/2025031
Published online 24 July 2025
  1. V. Giurgiutiu: Structural Health Monitoring of Aerospace Composites. Academic Press, Oxford, 2015, pp. 1–23 [Google Scholar]
  2. J. Fan, J. Njuguna: An introduction to lightweight composite materials and their use in transport structures, in: Lightweight Composite Structures in Transport. Elsevier, 2016, pp. 3–34 [Google Scholar]
  3. R.F. Gibson: Principles of Composite Material Mechanics. CRC Press, 2016 [Google Scholar]
  4. J.-M. Berthelot, F.F. Ling: Composite Materials: Mechanical Behavior and Structural Analysis. Vol. 435. Springer, 1999 [Google Scholar]
  5. D.J. Mead, S. Markus: The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. Journal of Sound and Vibration 10, 2 (1969) 163–175 [Google Scholar]
  6. A.W. Christian, R. Cabell: Initial investigation into the psychoacoustic properties of small unmanned aerial system noise, in: 23rd AIAA/CEAS Aeroacoustics Conference, 2017, p. 4051 [Google Scholar]
  7. C.T. Justine Hui, M.J. Kingan, Y. Hioka, G. Schmid, G. Dodd, K.N. Dirks, S. Edlin, S. Mascarenhas, Y.-M. Shim, Quantification of the psychoacoustic effect of noise from small unmanned aerial vehicles. International Journal of Environmental Research and Public Health 18, 17 (2021) 8893 [Google Scholar]
  8. A.J. Torija, Z. Li, P. Chaitanya: Psychoacoustic modelling of rotor noise. The Journal of the Acoustical Society of America 151, 3 (2022) 1804–1815 [Google Scholar]
  9. F.D. Monteiro, R. Merino-Martinez, L.T. Lima Pereira: Psychoacoustic evaluation of an array of distributed propellers under synchrophasing operation, in: 30th AIAA/CEAS Aeroacoustics Conference, 2024, p. 3321 [Google Scholar]
  10. E. Parizet, E. Guyader, V. Nosulenko: Analysis of car door closing sound quality. Applied Acoustics 69, 1 (2008) 12–22 [Google Scholar]
  11. H.B. Huang, X.R. Huang, R.X. Li, T.C. Lim, W.P. Ding: Sound quality prediction of vehicle interior noise using deep belief networks. Applied Acoustics 113 (2016) 149–161 [Google Scholar]
  12. U. Letens, A. Oetjen, D. Goecke, D. Maiberger: Practical Experience with Psychoacoustics in Automotive Engineering. Universitätsbibliothek der RWTH Aachen, 2019 [Google Scholar]
  13. Z. Ouelaa, R. Younes, A. Djebala, N. Hamzaoui, N. Ouelaa: Comparative study between objective and subjective methods for identifying the gravity of single and multiple gear defects in case of noisy signals. Applied Acoustics 185 (2022) 108432 [Google Scholar]
  14. X. Chen, J. Lin, H. Jin, Y. Huang, Z. Liu: The psychoacoustics annoyance research based on eeg rhythms for passengers in high-speed railway. Applied Acoustics 171 (2021) 107575 [CrossRef] [Google Scholar]
  15. J. Theyssen: The radiation from railway wheel modes and their effect on loudness, sharpness, and equivalent pressure level. Acta Acustica 8 (2024) 20 [Google Scholar]
  16. S. Atamer, M.E. Altinsoy: Sound quality of dishwashers: annoyance perception. Applied Acoustics 180 (2021) 108099 [Google Scholar]
  17. J. Tardieu, P. Susini, F. Poisson, P. Lazareff, S. McAdams: Perceptual study of soundscapes in train stations. Applied Acoustics 69, 12 (2008) 1224–1239 [Google Scholar]
  18. G. Fusaro, J. Kang, F. Asdrubali, W.-S. Chang: Assessment of acoustic metawindow unit through psychoacoustic analysis and human perception. Applied Acoustics 196 (2022) 108885 [Google Scholar]
  19. M.G. Roest: Design of a composite guitar. Master thesis report, Delft University of Technology (TU Delft), 2016 [Google Scholar]
  20. T. Duerinck, G. Verberkmoes, C. Fritz, M. Leman, L. Nijs, M. Kersemans, W. Van Paepegem: Listener evaluations of violins made from composites. The Journal of the Acoustical Society of America 147, 4 (2020) 2647–2655 [Google Scholar]
  21. S. Meunier, D. Habault, G. Canévet: Auditory evaluation of sound signals radiated by a vibrating surface. Journal of Sound and Vibration 247, 5 (2001) 897–915 [Google Scholar]
  22. G. Canévet, D. Habault, S. Meunier, F. Demirdjian: Auditory perception of sounds radiated by a fluid-loaded vibrating plate excited by a transient point force. Acta Acustica united with Acustica 90, 1 (2004) 181–193 [Google Scholar]
  23. F. Demirdjian, D. Habault, S. Meunier, G. Canévet: Can we hear the complexity of vibrating plates, in: Proceedings of the CFADAGA Conference, 2004 [Google Scholar]
  24. J. Faure, C. Marquis-Favre: Perceptual assessment of the influence of structural parameters for a radiating plate. Acta Acustica united with Acustica 91, 1 (2005) 77–90 [Google Scholar]
  25. F. Demirdjian, S. Meunier, D. Habault, G. Canévet: A comparative study of recorded and computed sounds radiated by vibrating plates, in: Proc. of Forum Acusticum, 2005 [Google Scholar]
  26. C. Marquis-Favre, J. Faure: Auditory evaluation of sounds radiated from a vibrating plate with various viscoelastic boundary conditions. Acta Acustica united with Acustica 94, 3 (2008) 419–432 [Google Scholar]
  27. A. Trollé, C. Marquis-Favre, J. Faure: An analysis of the effects of structural parameter variations on the auditory perception of environmental noises transmitted through a simulated window. Applied Acoustics 69, 12 (2008) 1212–1223 [Google Scholar]
  28. A. Trollé, C. Marquis-Favre, N. Hamzaoui: Auditory evaluation of sounds radiated from a vibrating plate inside a damped cavity. Acta Acustica united with Acustica 95, 2 (2009) 343–355 [Google Scholar]
  29. S. McAdams, V. Roussarie, A. Chaigne, B.L. Giordano: The psychomechanics of simulated sound sources: material properties of impacted thin plates. The Journal of the Acoustical Society of America 128, 3 (2010) 1401–1413 [Google Scholar]
  30. J. Hjortkjær, S. McAdams: Spectral and temporal cues for perception of material and action categories in impacted sound sources. The Journal of the Acoustical Society of America 140, 1 (2016) 409–420 [Google Scholar]
  31. Y. AllahTavakoli, M.N. Ichchou, C. Marquis-Favre, N. Hamzaoui: On a hybrid updating method for modeling vibroacoustic behaviors of composite panels. Journal of Sound and Vibration 565 (2023) 117902 [Google Scholar]
  32. Y. AllahTavakoli, C. Marquis-Favre, M. Ichchou, N. Hamzaoui: On the vibro-acoustic modeling of panels excited by diffuse acoustic field (DAF), in: INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Vol. 265. Institute of Noise Control Engineering, 2023, pp. 4354–4365 [Google Scholar]
  33. E. Ventsel, T. Krauthammer, E. Carrera: Thin plates and shells: theory, analysis, and applications. Applied Mechanics Reviews 55, 4 (2002) B72–B73 [Google Scholar]
  34. K. Kohsaka, K. Ushijima, W.J. Cantwell: Study on vibration characteristics of sandwich beam with BCC lattice core. Materials Science and Engineering: B 264 (2021) 114986 [Google Scholar]
  35. S. Narayanan, R.L. Shanbhag: Sound transmission through a damped sandwich panel. Journal of Sound and Vibration 80, 3 (1982) 315–327 [Google Scholar]
  36. F.J. Fahy: Foundations of Engineering Acoustics. Elsevier, 2000 [Google Scholar]
  37. S. Narayanan, R.L. Shanbhag: Sound transmission through elastically supported sandwich panels into a rectangular enclosure. Journal of Sound Vibration 77, 2 (1981) 251–270 [Google Scholar]
  38. C. Marchetto, L. Maxit, O. Robin, A. Berry: Vibroacoustic response of panels under diffuse acoustic field excitation from sensitivity functions and reciprocity principles. The Journal of the Acoustical Society of America 141, 6 (2017) 4508–4521 [Google Scholar]
  39. W.L. Briggs, V.E. Henson: The DFT: an owner's Manual for the Discrete Fourier Transform. SIAM, 1995 [Google Scholar]
  40. V. Koehl, E. Parizet: Influence of structural variability upon sound perception: usefulness of fractional factorial designs. Applied Acoustics 67, 3 (2006) 249–270 [Google Scholar]
  41. J. Faure: Influence des paramètres structuraux d’une plaque rayonnante sur la perception sonore. PhD thesis, Lyon, INSA, 2003 [Google Scholar]
  42. A. Trollé: Evaluation auditive de sons rayonnés par une plaque vibrante à l’intérieur d’une cavité amortie: ajustement des efforts de calcul vibro-acoustique. PhD thesis, INSA de Lyon, 2009 [Google Scholar]
  43. P. Chevret, E. Parizet: An efficient alternative to the paired comparison method for the subjective evaluation of a large set of sounds, in: Proceedings of the 19th International Congress on Acoustics (ICA 2007). Madrid, 2007, pp. 1–5 [Google Scholar]
  44. E. Parizet, V. Koehl: Application of free sorting tasks to sound quality experiments. Applied Acoustics 73, 1 (2012) 61–65 [Google Scholar]
  45. P.-Y. Michaud, S. Meunier, P. Herzog, M. Lavandier, G.D. d’Aubigny: Perceptual evaluation of dissimilarity between auditory stimuli: an alternative to the paired comparison. Acta Acustica united with Acustica 99, 5 (2013) 806–815 [Google Scholar]
  46. R.R. Sokal, F.J. Rohlf: The comparison of dendrograms by objective methods. Taxon 11 (1962) 33–40 [Google Scholar]
  47. J.S. Farris: On the cophenetic correlation coefficient. Systematic Zoology 18, 3 (1969) 279–285 [Google Scholar]
  48. L.A. Goodman, W.H. Kruskal, L.A. Goodman, W.H. Kruskal: Measures of Association for Cross Classifications. Springer, 1979 [Google Scholar]
  49. J.-P. Nakache, J. Confais: Approche pragmatique de la classification: arbres hiérarchiques, partitionnements. Editions Technip, 2004 [Google Scholar]
  50. J.D. Carroll, J.-J. Chang: Analysis of individual differences in multidimensional scaling via an n-way generalization of eckart-young decomposition. Psychometrika 35, 3 (1970) 283–319 [Google Scholar]
  51. J.D. Carroll: Individual differences and multidimensional scaling. Multidimensional Scaling: Theory and Applications in the Behavioral Sciences 1 (1972) 105–155 [Google Scholar]
  52. J.D. Carroll, P. Arabie: Multidimensional scaling. Measurement, Judgment and Decision Making (1998) 179–250 [Google Scholar]
  53. I. Borg, P.J.F. Groenen: Modern Multidimensional Scaling: Theory and Applications. Springer Science & Business Media, 2005 [Google Scholar]
  54. N. Jaworska, A. Chupetlovska-Anastasova: A review of multidimensional scaling (MDS) and its utility in various psychological domains. Tutorials in Quantitative Methods for Psychology 5, 1 (2009) 1–10 [Google Scholar]
  55. M.C. Hout, M.H. Papesh, S.D. Goldinger: Multidimensional scaling. Wiley Interdisciplinary Reviews: Cognitive Science 4, 1 (2013) 93–103 [Google Scholar]
  56. P.C. Hansen: The L-curve and its use in the numerical treatment of inverse problems, in: Computational Inverse Problems in Electrocardiology Conference, 1999 [Google Scholar]
  57. F. Ponsi, E. Bassoli, L. Vincenzi: A multi-objective optimization approach for fe model updating based on a selection criterion of the preferred pareto-optimal solution, in: Structures. Vol. 33. Elsevier, 2021, pp. 916–934 [Google Scholar]
  58. S.L. Weinberg, J.D. Carroll, H.S. Cohen: Confidence regions for indscal using the Jackknife and Bootstrap techniques. Psychometrika 49 (1984) 475–491 [Google Scholar]
  59. S. Ghinet, N. Atalla: Modeling thick composite laminate and sandwich structures with linear viscoelastic damping. Computers & Structures 89, 15, 16 (2011) 1547–1561 [Google Scholar]
  60. J. Li, Y. Narita: Analysis and optimal design for the damping property of laminated viscoelastic plates under general edge conditions. Composites Part B: Engineering 45, 1 (2013) 972–980 [Google Scholar]
  61. D. Montalvão, R. Cláudio, A.M.R. Ribeiro, J. Duarte-Silva: Experimental measurement of the complex young's modulus on a CFRP laminate considering the constant hysteretic damping model. Composite Structures 97 (2013) 91–98 [Google Scholar]
  62. R. Cherif, J.-D. Chazot, N. Atalla: Damping loss factor estimation of two-dimensional orthotropic structures from a displacement field measurement. Journal of Sound and Vibration 356 (2015) 61–71 [Google Scholar]
  63. E. Sarlin, Y. Liu, M. Vippola, M. Zogg, P. Ermanni, J. Vuorinen, T. Lepistö: Vibration damping properties of steel/rubber/composite hybrid structures. Composite Structures 94, 11 (2012) 3327–3335 [Google Scholar]
  64. Z. Zergoune, M.N. Ichchou, O. Bareille, B. Harras, R. Benamar, B. Troclet: Assessments of shear core effects on sound transmission loss through sandwich panels using a two-scale approach. Computers & Structures 182 (2017) 227–237 [Google Scholar]
  65. Z. Qi, Y. Liu, W. Chen: An approach to predict the mechanical properties of CFRP based on cross-scale simulation. Composite Structures 210 (2019) 339–347 [Google Scholar]
  66. Y. Zhou, A. Liu, Y. Xu, Y. Guo, X. Yi, Y. Jia: Frequency-dependent orthotropic damping properties of nomex honeycomb composites. Thin-Walled Structures 160 (2021) 107372 [Google Scholar]
  67. M.N. Collins, M. Culebras, G. Ren: Chapter 8 – the use of lignin as a precursor for carbon fiber-reinforced composites, in: D. Puglia, C. Santulli, F. Sarasini, Eds. Micro and Nanolignin in Aqueous Dispersions and Polymers. Elsevier, 2022, pp. 237–250 [Google Scholar]
  68. L.L. Thurstone: A law of comparative judgment. Psychological Review 34, 4 (1927) 273 [Google Scholar]
  69. T. Bramley: Paired comparison methods. Techniques for Monitoring the Comparability of Examination Standards 246 (2007) 294 [Google Scholar]
  70. T.J. DiCiccio, B. Efron: Bootstrap confidence intervals. Statistical Science 11, 3 (1996) 189–228 [Google Scholar]
  71. E. Zwicker, H. Fastl, U. Widmann, K. Kurakata, S. Kuwano, S. Namba: Program for calculating loudness according to DIN 45631 (ISO 532B). Journal of the Acoustical Society of Japan (E) 12, 1 (1991) 39–42 [Google Scholar]
  72. dBsonic Manual: dbsonic sound analysis software. Software manual, 2005 [Google Scholar]
  73. Q. Legros: Caractérisation physique et perceptive des bruits de passage de TGV pour une amélioration des modèles de gêne. Master thesis report, ENTPE, 2020 [Google Scholar]
  74. ISO: Acoustics – methods for calculating loudness – part 1: Zwicker method, 2017 [Google Scholar]
  75. W. Aures: Berechnungsverfahren für den sensorischen wohlklang beliebiger schallsignale. Acta Acustica united with Acustica 59, 2 (1985) 130–141 [Google Scholar]
  76. W. Aures: Ein berechnungsverfahren der rauhigkeit. Acta Acustica united with Acustica 58, 5 (1985) 268–281 [Google Scholar]
  77. M.S. Engel, A. Fiebig, C. Pfaffenbach, J. Fels: A review of the use of psychoacoustic indicators on soundscape studies. Current Pollution Reports 7 (2021) 359–378 [CrossRef] [Google Scholar]
  78. J. Branke: Multiobjective Optimization: Interactive and Evolutionary Approaches. Vol. 5252. Springer Science & Business Media, 2008 [Google Scholar]
  79. K. Deb: Multi-objective optimisation using evolutionary algorithms: an introduction, in: Multi-objective Evolutionary Optimisation for Product Design and Manufacturing. Springer, 2011, 3–34 [Google Scholar]
  80. Y. AllahTavakoli: A contribution to the vibroacoustic and psychoacoustic design of composite structures. Theses, École Nationale des Travaux Publics de l’État [ENTPE], https://theses.hal.science/tel-04659121v1/file/Allah_Tavakoli_PhD_thesis_2023.pdf, December 2023 [Google Scholar]
  81. P.C. Hansen: regtools: regularization tools, 2023 [Google Scholar]
  82. P.C. Hansen: Regularization tools version 4.0 for matlab 7.3. Numerical Algorithms 46 (2007) 189–194 [Google Scholar]
  83. R.A. Johnson, D.W. Wichern: Applied Multivariate Statistical Analysis. Prentice Hall, 2002 [Google Scholar]
  84. E. Zwicker, H. Fastl: Psychoacoustics: Facts and Models. Vol. 22. Springer Science & Business Media, 2013 [Google Scholar]
  85. R.T. Marler, J.S. Arora: Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization 26 (2004) 369–395 [Google Scholar]
  86. C.M. Shearer, C.E.S. Cesnik: Nonlinear flight dynamics of very flexible aircraft. Journal of Aircraft 44, 5 (2007) 1528–1545 [Google Scholar]
  87. B.J. Kim, D.K. Yun, S.H. Lee, G.-W. Jang: Topology optimization of industrial robots for system-level stiffness maximization by using part-level metamodels. Structural and Multidisciplinary Optimization 54 (2016) 1061–1071 [Google Scholar]
  88. B.T. Warwick, C.K. Mechefske, I.Y. Kim: Topology optimization of a pre-stiffened aircraft bulkhead. Structural and Multidisciplinary Optimization 60 (2019) 1667–1685 [Google Scholar]
  89. F.A. Pires, M. Wandel, C. Thomas, E. Deckers, W. Desmet, C. Claeys: Improving the sound transmission loss of an aircraft ceiling panel by locally resonant metamaterials. Technical report, SAE Technical Paper, 2022 [Google Scholar]
  90. A. Trolle, C. Marquis-Favre, N. Hamzaoui: Auditory evaluation of sounds radiated from a vibrating plate inside a damped cavity: adjustment of the frequency resolution of vibro-acoustical computing. Acta Acustica united with Acustica 98, 3 (2012) 441–450 [Google Scholar]
  91. G. Pulvirenti, N. Totaro, E. Parizet: A perceptual evaluation of numerical errors in acoustic FEM simulation for sound quality applications. Applied Acoustics 207 (2023) 109295 [Google Scholar]
  92. A. Miloudi, N. Hamzaoui, J.-L. Guyader: Subjective evaluations of sound radiated by impacted plates, using the design of experiments method. Applied Acoustics 71, 6 (2010) 531–538 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.