Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 50
Number of page(s) 13
Section Acoustic Materials and Metamaterials
DOI https://doi.org/10.1051/aacus/2025033
Published online 12 August 2025
  1. K.V. Horoshenkov: A review of acoustical methods for porous material characterisation. The International Journal of Acoustics and Vibration 22, 1 (2017) 92–103. [Google Scholar]
  2. N. Hiremath, V. Kumar, N. Motahari, D. Shukla: An overview of acoustic impedance measurement techniques and future prospects. Metrology 1, 1 (2021) 17–38. [Google Scholar]
  3. A. Pereira, A. Gaspar, L. Godinho, P. Amado Mendes, D. Mateus, J. Carbajo, J. Ramis, P. Poveda: On the use of perforated sound absorption systems for variable acoustics room design. Buildings 11, 11 (2021) 543. [Google Scholar]
  4. F. Kraxberger, E. Kurz, W. Weselak, G. Kubin, M. Kaltenbacher, S. Schoder: A validated finite element model for room acoustic treatments with edge absorbers. Acta Acustica 7 (2023) 48. [Google Scholar]
  5. M. Vorländer: Computer simulations in room acoustics: concepts and uncertainties. The Journal of the Acoustical Society of America 133, 3 (2013) 1203–1213. [Google Scholar]
  6. S. Floss, F. Czwielong, M. Kaltenbacher, S. Becker: Design of an in-duct micro-perforated panel absorber for axial fan noise attenuation. Acta Acustica 5 (2021) 24. [CrossRef] [EDP Sciences] [Google Scholar]
  7. International Organization for Standardization: ISO 10534-2:2023(E) Acoustics – Determination of sound absorption coefficient and impedance in impedance tubes – Part 2: Two-microphone technique for normal sound absorption coefficient and normal surface impedance, 2023. [Google Scholar]
  8. E33 Committee: ASTM E1050-19 test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system, 2019.DOI: https://doi.org/10.1520/E1050-19. [Google Scholar]
  9. E33 Committee: ASTM E2611-19 test method for normal incidence determination of porous material acoustical properties based on the transfer matrix method, 2019.DOI: https://doi.org/10.1520/E2611-19. [Google Scholar]
  10. A. Cummings: Impedance tube measurements on porous media: the effects of air-gaps around the sample. Journal of Sound and Vibration 151, 1 (1991) 63–75. [Google Scholar]
  11. K.V. Horoshenkov, A. Khan, F.-X. Bécot, L. Jaouen, F. Sgard, A. Renault, N. Amirouche, F. Pompoli, N. Prodi, P. Bonfiglio, G. Pispola, F. Asdrubali, J. Hübelt, N. Atalla, C.K. Amédin, W. Lauriks, L. Boeckx: Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests). The Journal of the Acoustical Society of America 122, 1 (2007) 345–353. [Google Scholar]
  12. T. Schultz, M. Sheplak, L.N. Cattafesta: Uncertainty analysis of the two-microphone method. Journal of Sound and Vibration 304, 1, 2 (2007) 91–109. [Google Scholar]
  13. M. Stender, C. Adams, M. Wedler, A. Grebel, N. Hoffmann: Explainable machine learning determines effects on the sound absorption coefficient measured in the impedance tube. The Journal of the Acoustical Society of America 149, 3 (2021) 1932–1945. [Google Scholar]
  14. M. Stender, M. Wedler, N. Hoffmann, C. Adams: Explainable machine learning: a case study on impedance tube measurements, in: Inter-Noise – 50th International Congress and Exposition on Noise Control Engineering. Washington, DC, USA, August 2021, pp. 3223–3234. [Google Scholar]
  15. Brüel & Kjaer: Impedance tube kit type 4206. www.bksv.com/media/doc/Bp1039.pdf, Last access on2024-12-09. [Google Scholar]
  16. BASF: Basotect – The versatile melamine resin foam. https://www.construction.basf.us/files/pdf/Basotect_brochure.pdf, Last access on 2024-12-09. [Google Scholar]
  17. Pinta Acoustic GmbH: Pinta Plano Polar. https://www.pinta-acoustic.de/cms/upload/Download-PDFs/Verklebesysteme/Technische_Merkblaetter/TM_Plano_Polar_2004.pdf, Last access on 2024-12-09. [Google Scholar]
  18. A. Caiazzo: Explainable machine learning determines potential uncertainty factors related to tube impedance measurements of the sound absorption coefficient. Master’s thesis, Universita Federico II, Naples, IT, 2024. [Google Scholar]
  19. H. Koruk: An assessment of the performance of impedance tube method. Noise Control Engineering Journal 62, 4 (2014) 264–274. [Google Scholar]
  20. D.L. Johnson, J. Koplik, R. Dashen: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics 176 (1987) 379–402. [Google Scholar]
  21. Y. Champoux, J.-F. Allard: Dynamic tortuosity and bulk modulus in air-saturated porous media. Journal of Applied Physics 70, 4 (1991) 1975–1979. [CrossRef] [Google Scholar]
  22. D. Lafarge, P. Lemarinier, J.F. Allard, V. Tarnow: Dynamic compressibility of air in porous structures at audible frequencies. The Journal of the Acoustical Society of America 102, 4 (1997) 1995–2006. [CrossRef] [Google Scholar]
  23. S. Floss: Mitigation of sound by micro-perforated absorbers in different types of sound fields – design and evaluation. PhD thesis, TU Wien, 2022. [Google Scholar]
  24. Igus: Iglidur G Sleeve Bearing. https://www.igus.eu/iglidur-ibh/sleeve-bearings/product-details/iglidur-g-m, Last access on 2024-12-09. [Google Scholar]
  25. C. Adams, A. Grebel, S. Wenzel, S. Schoder, M. Kaltenbacher: FOAM 01: Acoustic Material, https://doi.org/10.5281/ZENODO.10551343, January 2024x. [Google Scholar]
  26. A. Caiazzo, F. Kraxberger, C. Adams, A. Wurzinger, G. Petrone, S. Schoder, S. De Rosa, M. Kaltenbacher: FOAM 02: Impedance tube measurements of two porous materials with diameter variation, https://doi.org/10.5281/zenodo.14190550, 2024. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.