Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 44
Number of page(s) 22
Section Environmental Noise
DOI https://doi.org/10.1051/aacus/2025027
Published online 17 July 2025
  1. Bundesverband Wärmepumpe (BWP) e.V.: Sales statistics for heating heat pumps in Germany 2017 to 2023, 2024, https://www.waermepumpe.de/presse/zahlen-daten/, last accessed on 27.01.2025. [Google Scholar]
  2. U. Möhler, C. Eulitz: Leitfaden – Tieffrequente Geräusche im Wohnumfeld. Umweltbundesamt, 2017 [Google Scholar]
  3. T. Schmidt, D. Müller: Vermeidung der akustischen Lästigkeit von Luft-Wasser-Wärmepumpen, in: Deutsche Gesellschaft für Akustik e.V. (Hrsg.), Fortschritte der Akustik, DAGA 2024: 50. Jahrestagung für Akustik (2024), pp. 774–777 [Google Scholar]
  4. European Commission: Ecodesign Directive (EU) No. 813, 2013 [Google Scholar]
  5. DIN EN 12102-1:2023-11: Air conditioners, liquid chilling packages, heat pumps, process chillers and dehumidifiers with electrically driven compressors – Determination of the sound power level – Part 1: Air conditioners, liquid chilling packages, heat pumps for space heating and cooling, dehumidifiers and process chillers; German version EN 12102-1:2022. [Google Scholar]
  6. DIN EN 14511-2:2023-08: Air conditioners, liquid chilling packages and heat pumps for space heating and cooling and process chillers, with electrically driven compressors – Part 2: Test conditions; German version EN 14511-2:2022. [Google Scholar]
  7. DIN EN 14825:2023-10: Air conditioners, liquid chilling packages and heat pumps, with electrically driven compressors, for space heating and cooling, commercial and process cooling – Testing and rating at part load conditions and calculation of seasonal performance; German version EN 14825:2022. [Google Scholar]
  8. DIN EN 14511-3:2023-12: Air conditioners, liquid chilling packages and heat pumps for space heating and cooling and process chillers, with electrically driven compressors – Part 3: Test methods; German version EN 14511-3:2022. [Google Scholar]
  9. T. Oltersdorf, H. Fugmann, L. Schnabel: European Heat Pump Market Data – Evolution of the state of the art heat pump over time and its possible knowledge gain, in: 14th IEA Heat Pump Conference, Chicago, 2023 [Google Scholar]
  10. Stiftung Warentest: test Oktober (2023), 62–67 [Google Scholar]
  11. Bundesverband Wärmepumpe (BWP) e.V.: Schallrechner. https://www.waermepumpe.de/schallrechner/, last accessed on 27.12.2023. [Google Scholar]
  12. UK Department of Energy and Climate Change: Acoustic Noise Measurements of Air Source Heat Pumps (EE2014), 2011 [Google Scholar]
  13. M. Torjussen, et al.: Noise from ASHPS – What Do We Know in ACOUSTICS 2023. Institute of Acoustics, Winchester, 2023, https://doi.org/10.25144/16604 [Google Scholar]
  14. E. Langerova, J. Kralicek, M. Kucera, Air-to-water heat pump noise in residential settings: a comprehensive review. Renewable and Sustainable Energy Reviews 207 (2025) 114968 [Google Scholar]
  15. F. Bessac: Final Report Part 8 Annex 51: Acoustic Signatures of Heat Pumps: 2.3: Seasonal Sound Power Level, 2022 [Google Scholar]
  16. C.H. Stignor, O. Gustafsson, H. Hellgren: Heat Pump Noise Operation Dependence and Seasonal Averaging. Congress of Refrigiration, 2019 [Google Scholar]
  17. C.H. Kasess, C. Reichl, H. Waubke, P. Majdak: Perception Rating of the Acoustic Emissions of Heat Pumps. Forum Acusticum Lyon, France (2020), pp. 2453–2458 [Google Scholar]
  18. C. Vering, J. Klingebiel, C. Reichl, J. Emhofer, M. Nürenberg, D. Müller: Simultaneous energy efficiency and acoustic evaluation of heat pump systems using dynamic simulation models, in: HPC Foundation, 13th IEA Heat Pump Conference Jeju, Korea, 2021 [Google Scholar]
  19. J. Klingebiel, F. Will, M. Beckschulte, C. Vering, D. Müller: Data-driven Model Predictive Control for Energy-Efficient and Low-Noise Operation of Air-Source Heat Pumps. ECOS, Greece, 2024 [Google Scholar]
  20. C. Vering: Optimal Design of heat pump systems for existing buildings. Dissertation, RWTH Aachen University, 2023 [Google Scholar]
  21. T.K.B. Fajar, P.R. Bagas, S. Ukhi, M.I. Alhamid, A. Lubis: Energy and exergy analysis of an R410A small vapor compression system retrofitted with R290. Case Studies in Thermal Engineering 21 (2020) 100671 [Google Scholar]
  22. F. Czwielong, F. Krömer, S. Becker: Experimental investigations of the sound emission of axial fans under the influence of suction-side heat exchangers, in: 25th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics, Delft, The Netherlands, 2019 [Google Scholar]
  23. DIN EN 13771-1:2017-04: Compressors and condensing units for refrigeration – Performance testing and test methods – Part 1: Refrigerant compressors; German version EN 13771-1:2016. [Google Scholar]
  24. D.A. Pfeil: Untersuchung des Langzeitverhaltens von Wärmepumpen und den darin eingesetzten hermetischen Kältemittelkompressoren. Dissertation (1. Auflage). Forschungsberichte des Deutschen Kälte- und Klimatechnischen Vereins e.V: Nr. 90, 2021 [Google Scholar]
  25. DIN EN ISO 3745:2017-10: Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Precision methods for anechoic rooms and hemi-anechoic rooms (ISO 3745:2012 + Amd 1:2017); German version EN ISO 3745:2012 + A1:2017. [Google Scholar]
  26. Air-Conditioning, Heating, and Refrigeration Institute: ANSI/AHRI 530-2022 (SI): Rating of Sound and Vibration for Positive Displacement Refrigerant Compressors, 2022 [Google Scholar]
  27. Japan Society of Refrigerating and Air Conditioning Engineers: Compressors for air conditioning and refrigeration, JSRAE Technical Book Series, 2018 [Google Scholar]
  28. DIN EN ISO 3744:2011-02: Acoustics – Determination of sound power levels and sound energy levels of noise sources using sound pressure – Engineering methods for an essentially free field over a reflecting plane (ISO 3744:2010); German version EN ISO 3744:2010. [Google Scholar]
  29. T. Carolus: Ventilatoren, Aerodynamischer Entwurf – Konstruktive Lärmminderung – Optimierung. Springer Vieweg, 2021 [Google Scholar]
  30. ISO 13347-3: Industrial fans – Determination of fan sound power levels under standardized laboratory conditions – Part 3: Enveloping surface methods, 2004 [Google Scholar]
  31. E. Reichert: Förderprojekt LowNoise Messergebnisse AxiTone 500, Internal Project Report: PN315257, PN316001, ebm-Papst Mulfingen GmbH & Co. KG, 2023 [Google Scholar]
  32. R.D. Madison: Fan Engineering (Handbook), 5th edition. Buffalo Forge Company, Buffalo, NY, 1949 [Google Scholar]
  33. DIN ISO 532-1:2022-03: Acoustics – Methods for calculating loudness – Part 1: Zwicker method (ISO 532-1:2017, Corrected version 2017-11), https://doi.org/10.31030/3248850. [Google Scholar]
  34. Technical Committee 26: ECMA 418-2, Psychoacoustic metrics for ITT equipment – Part 2 (Model based on human perception), 2022 [Google Scholar]
  35. L. Stürenburg, H. Braren, L. Aspöck, J. Fels: Recordings of an Air-to-Water Heat Pump. Zenodo, 2024, https://doi.org/10.5281/zenodo.13365535 [Google Scholar]
  36. DIN 45680:1997-03: Measurement and assessment of low-frequency noise immissions in the neighbourhood. https://dx.doi.org/10.31030/7211690. [Google Scholar]
  37. J. Song-Manguelle, S. Schröder, T. Geyer, G. Ekemb, J.M. Nyobe-Yome: Prediction of mechanical shaft failures due to pulsating torques of variable frequency drives. IEEE Transactions on Industry Applications 46, 5 (2010) 1979–1988 [Google Scholar]
  38. Internal Viessmann Software by M. Immel: Heat pump calculation HPC V6.2.5, 2023 [Google Scholar]
  39. alpha innotec: Air/Water Heat Pumps Operating Manual LWDV – series, 83055800iUKLWDV, p. 21, https://files.ait-group.net/alp/01%20heat%20pumps/01%20air%20water/07%2520LWDV/ [Google Scholar]
  40. Bundesregierung Deutschland: TA Lärm, Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm – TA Lärm), 1998 [Google Scholar]
  41. Projektträger Jülich: Verbundvorhaben: LowNoise (03EN4020B): Integrale Betrachtung, Optimierung & methodische Bewertung v. Luft-Wasser-Wärmepumpen zur Reduktion akustischer Emissionen; Teilvorhaben: Erarbeitung eines Geräuschmodells zur Beschreibung des Akustikverhaltens eines WP-Demonstrators m.d. geringsten derzeit möglichen akust. Emissionen, https://www.enargus.de/search/?q=01240403%2F1. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.