Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 45
Number of page(s) 7
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2025029
Published online 17 July 2025
  1. M.V. da Silva Evangelista: Estudo comparativo do efeito de três diferentes surdinas na sonoridade de seis violinos: alteraçoes na intensidade e no espectro harmônico. Master's thesis, Federal University of Minas Gerais, Belo Horizonte, MG, 2019. http://hdl.handle.net/1843/32235 [Google Scholar]
  2. M.V. da Silva Evangelista: Análise acústica aplicada ao estudo de surdinas de violino: fundamentos para um protótipo modular multifuncional. Ph.d. dissertation, Federal University of Minas Gerais, Belo Horizonte, MG, 2023. http://hdl.handle.net/1843/65103 [Google Scholar]
  3. M.V. da Silva Evangelista, S. Freire: Analysis of the influence of different construction factors of violin mutes on their effects: a methodological prospection based on the controlled variation of physical characteristics of the devices, in: 12º Congresso Iberoamericano de Acústica (FIA 2020/22) & 29º Encontro da Sobrac, 2022. https://musica.ufmg.br/sfreire/wp-content/uploads/sites/13/2022/09/marcus-vinicius-freire-fia-2022.pdf [Google Scholar]
  4. K. Sarch: Con sordino: the art of the mute. American String Teacher 67, 4 (2017) 24–29 [Google Scholar]
  5. D. Loughridge: Muted violins from Lully to Haydn. Early Music 44, 3 (2016) 427–447 [Google Scholar]
  6. D.D. Boyden: The History of Violin Playing from its Origins to 1761 and its Relationship to the Violin and Violin Music. Oxford University Press, 1990 [Google Scholar]
  7. J. Giltay, M. Haas: On the motion of the bridge of the violin, in: KNAW, Proceedings. Vol. 12, 1909, pp. 1909–1910 [Google Scholar]
  8. P.H. Edwards: A method for the quantitative analysis of musical tone. Physical Review (Series I) 32, 1 (1911) 23 [Google Scholar]
  9. A. Tyndall, G. White: On the “wolf-note” of the violin and’cello. Nature 98, 2446 (1916) 29 [Google Scholar]
  10. C. Raman: On the “wolf-note” of the violin and’cello. Nature 97, 2435 (1916) 362–363 [Google Scholar]
  11. C. Raman: On the alterations of tone produced by a violin – “mute”. Nature 100, 2501 (1917) 84 [Google Scholar]
  12. C. Raman: Lix. On the wolf-note in bowed stringed instruments. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 35, 210 (1918) 493–496 [Google Scholar]
  13. C. Raman: Experiments with mechanically-played violins. Proceedings of the Indian Association for the Cultivation of Science 6 (1920) 107–112 [Google Scholar]
  14. E.V. Jansson, J. Sundberg: Long-time-average-spectra applied to analysis of music. Quarterly progress and status report, 1972 [Google Scholar]
  15. L. Cremer: The Physics of the Violin. MIT Press, Cambridge, MA, 1984 [Google Scholar]
  16. C. Gough: Science and the stradivarius. Physics World 13, 4 (2000) 27 [Google Scholar]
  17. C.E. Gough: Violin acoustics. Acoustics Today 12, 2 (2016) 22–30 [Google Scholar]
  18. J. Woodhouse: On the “bridge hill” of the violin. Acta Acustica united with Acustica 91, 1 (2005) 155–165 [Google Scholar]
  19. J. Woodhouse: The acoustics of the violin: a review. Reports on Progress in Physics 77, 11 (2014) 115901 [Google Scholar]
  20. G. Bissinger: The violin bridge as filter. The Journal of the Acoustical Society of America 120, 1 (2006) 482–491 [Google Scholar]
  21. J. Meyer: Acoustics and the Performance of Music: Manual for Acousticians, Audio Engineers, Musicians, Architects and Musical Instrument Makers. Springer Science & Business Media, New York, 2009 [Google Scholar]
  22. N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments. Springer Science & Business Media, New York, 2012 [Google Scholar]
  23. W.M. Hartmann: Principles of Musical Acoustics. Springer, New York, 2013 [Google Scholar]
  24. E.J. Heller: Why You Hear What You Hear: An Experiential Approach to Sound, Music, and Psychoacoustics. Princeton University Press, Princeton, NJ, 2013 [Google Scholar]
  25. B. Elie, F. Gautier, B. David: Acoustic signature of violins based on bridge transfer mobility measurements. The Journal of the Acoustical Society of America 136, 3 (2014) 1385–1393 [Google Scholar]
  26. C.Y. Liang, L. Su, Y.H. Yang, H.M. Lin: Musical Offset Detection of Pitched Instruments: The Case of Violin, in: ISMIR, 2015, pp. 281–287 [Google Scholar]
  27. D. Loughridge: Timbre Before Timbre. The Oxford Handbook of Timbre, Vol. 269, 2021 [Google Scholar]
  28. C.E. Seashore: Psychology of Music. McGraw-Hill Book Company, New York and London, 1938 [Google Scholar]
  29. C.E. Seashore: The psychology of music. XVII. What does the mute do to a violin tone? Music Educators Journal (1938) 23 [Google Scholar]
  30. K. Kishi: Influence of the weight of mutes on tones of a violin family. The Journal of the Acoustical Society of America 103, 5 (1998) 2916 [Google Scholar]
  31. C. Ahrens: Metallic mutes used in the eighteenth century. The Galpin Society Journal 60 (2007) 220–119 [Google Scholar]
  32. T. Tajimi, Y. Soeta, T. Ohsawa, K. Ito: ACF analysis over the open strings’ sound of a violin with and without various mutes, in: UK Institute of Acoustics Day Meeting Sheffield, 2011 [Google Scholar]
  33. S. Mousavion, S. Sarkar: Empirical study of violin acoustics and its perception under various mutes. The Journal of the Acoustical Society of America 138, 3 (2015) 1935 [Google Scholar]
  34. H. Fletcher, W.A. Munson: Loudness, its definition, measurement and calculation. Bell System Technical Journal 12, 4 (1933) 377–430 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.