Open Access
Issue
Acta Acust.
Volume 9, 2025
Article Number 52
Number of page(s) 15
Section Structural Acoustics and Vibroacoustics
DOI https://doi.org/10.1051/aacus/2025036
Published online 12 August 2025
  1. J. Fan, J. Njuguna: An introduction to lightweight composite materials and their use in transport structures, in: Lightweight Composite Structures in Transport: Design, Manufacturing, Analysis and Performance. Woodhead Publishing, 2016, pp. 3–34. [Google Scholar]
  2. M. Girardi, C. Padovani, D. Pellegrini, L. Robol: A finite element model updating method based on global optimization. Mechanical Systems and Signal Processing 152 (2021) 107372. [Google Scholar]
  3. D. Chronopoulos, B. Troclet, M. Ichchou, J.P. Lainé: A unified approach for the broadband vibroacoustic response of composite shells. Composites Part B: Engineering 43 (2012) 1837–1846. [Google Scholar]
  4. R.K. Apalowo, D. Chronopoulos, M. Malik: The influence of temperature on wave scattering of damaged segments within composite structures. MATEC Web of Conferences 211 (2018) 19005. [Google Scholar]
  5. H. Zhang, Z. Li, Y. Deng, H. Li, H. Cao, X. Wang: Optimal design study of vibro-acoustic resistance of porous foam composite laminates. Applied Composite Materials 31 (2024) 1663–1686. [Google Scholar]
  6. D. Zheng, W.K. Binienda: Analysis of impact response of composite laminates under prestress. Journal of Aerospace Engineering 21 (2008) 197–205. [Google Scholar]
  7. H. Saghafi, T. Brugo, A. Zucchelli, C. Fragassa, G. Minak: Comparison of the effect of preload and curvature of composite laminate under impact loading. FME Transactions 44 (2016) 353. https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=14512092&AN=120724552&h=v7kX9KIVcE%2F0nT%2FFYtxzW1f5MjRxNAGVJFocwMerqRZACNNE2AoZIPNrwbSPvCWF3yUQ6Pyic3htqVWbcE9%2F%2FQ%3D%3D&crl=c (accessed March 13, 2025). [Google Scholar]
  8. A. Tarkashvand, M. Montasheri, K. Daneshjou: Analysis of vibroacoustic behavior of partially coupled fluid-structure laminated composite cylinders using two coordinate systems. Ocean Engineering 292 (2024) 116525. [Google Scholar]
  9. Z. Shen, R. Dong, J. Li, Y. Su, X. Long: Determination of gradient residual stress for elastoplastic materials by nanoindentation. Journal of Manufacturing Processes 109 (2024) 359–366. [Google Scholar]
  10. W. Zhang, J. Huang, J. Lin, B. Lin, X. Yang, Y. Huan: Experimental and numerical investigation of mechanical behavior of segmental joint of shield tunneling strengthened by prestressed CFRP plates. Structures 70 (2024) 107634. [Google Scholar]
  11. Y. Wang, Z. Han, X. Xu, Y. Luo: Topology optimization of active tensegrity structures. Computers & Structures 305 (2024) 107513. [Google Scholar]
  12. X. Mi, Y. Zhao, Q. Zhan, M. Chen: Vibration reduction study of a simplified floating raft system by installing connecting nonlinear spring-mass systems. Thin-Walled Structures 210 (2025) 113015. [Google Scholar]
  13. R.K. Apalowo, D. Chronopoulos: Vibroacoustic design optimization of curved composite shells. Polymers and Polymer Composites 29 (2021) S1520–S1531. [Google Scholar]
  14. R.K. Apalowo, D. Chronopoulos, S. Cantero-Chinchilla: Wave interaction with nonlinear damage and generation of harmonics in composite structures. Composite Structures 230 (2019) 111495. [Google Scholar]
  15. S. Ghinet, N. Atalla, H. Osman: The transmission loss of curved laminates and sandwich composite panels. Journal of the Acoustical Society of America 118 (2005) 774–790. [Google Scholar]
  16. S. Ghinet, N. Atalla, H. Osman: Diffuse field transmission into infinite sandwich composite and laminate composite cylinders. Journal of Sound and Vibration 289 (2006) 745–778. [Google Scholar]
  17. Y. Yang, M. Kingan: A hybrid wave and finite element/boundary element method for predicting the vibroacoustic characteristics of finite-width complex structures. Journal of Sound and Vibration 582 (2024) 118402. [Google Scholar]
  18. B. Zaparoli Cunha, C. Droz, A.M. Zine, S. Foulard, M. Ichchou: A review of machine learning methods applied to structural dynamics and vibroacoustic. Mechanical Systems and Signal Processing 200 (2023) 110535. [Google Scholar]
  19. N. Gao, M. Wang, X. Liang, G. Pan: On-demand prediction of low-frequency average sound absorption coefficient of underwater coating using machine learning. Results in Engineering 25 (2025) 104163. [Google Scholar]
  20. S. Wang, J. He, J. Fan, P. Sun, D. Wang: A time-domain method for free vibration responses of an equivalent viscous damped system based on a complex damping model. Journal of Low Frequency Noise Vibration and Active Control 42 (2023) 1531–1540. [Google Scholar]
  21. N. Gao, H. Yu, J. Liu, J. Deng, Q. Huang, D. Chen, G. Pan: Experimental investigation of composite metamaterial for underwater sound absorption. Applied Acoustics 211 (2023) 109466. [Google Scholar]
  22. F. Liu, X. Zhao, Z. Zhu, Z. Zhai, Y. Liu: Dual-microphone active noise cancellation paved with Doppler assimilation for TADS. Mechanical Systems and Signal Processing 184 (2023) 109727. [Google Scholar]
  23. B.R. Mace, E. Manconi: Modelling wave propagation in two-dimensional structures using finite element analysis. Journal of Sound and Vibration 318 (2008) 884–902. [Google Scholar]
  24. E. Manconi, B.R. MacE, R. Garziera: The loss-factor of pre-stressed laminated curved panels and cylinders using a wave and finite element method. Journal of Sound and Vibration 332 (2013) 1704–1711. [Google Scholar]
  25. N. Aimakov, G. Tanner, D. Chronopoulos: A wave finite element approach for modelling wave transmission through laminated plate junctions. Scientific Reports 12, 1 (2022) 1–15. [Google Scholar]
  26. D. Chronopoulos, C. Droz, R. Apalowo, M. Ichchou, W.J. Yan: Accurate structural identification for layered composite structures, through a wave and finite element scheme. Composite Structures 182 (2017) 566–578. [Google Scholar]
  27. T. Ampatzidis, D. Chronopoulos: Acoustic transmission properties of pressurised and pre-stressed composite structures. Composite Structures 152 (2016) 900–912. [Google Scholar]
  28. C. Fenemore, M.J. Kingan, B.R. Mace: Application of the wave and finite element method to predict the acoustic performance of double-leaf cross-laminated timber panels. Building Acoustics 30 (2023) 203–225. [Google Scholar]
  29. M.R. Zarastvand, M. Ghassabi, R. Talebitooti: Prediction of acoustic wave transmission features of the multilayered plate constructions: a review. Journal of Sandwich Structures and Materials 24 (2022) 218–293. [Google Scholar]
  30. Y. Luo, X. Zhang, H. Zhou, L. Elmaimouni: Shear horizontal wave propagation in piezoelectric semiconductor nanoplates with the consideration of surface effects and nonlocal effects. Mechanics of Advanced Materials and Structures (2025). https://doi.org/10.1080/15376494.2025.2488058. [Google Scholar]
  31. P. Zhang, W. Shao, H. Arvin, W. Chen, W. Wu: Nonlinear free vibrations of a nanocomposite micropipes conveying laminar flow subjected to thermal ambient:employing invariant manifold approach. Journal of Fluids and Structures 135 (2025) 104311. [Google Scholar]
  32. Y. Yang, C. Fenemore, M.J. Kingan, B.R. Mace: Analysis of the vibroacoustic characteristics of cross laminated timber panels using a wave and finite element method. Journal of Sound and Vibration 494 (2021) 115842. [Google Scholar]
  33. E. Manconi, B.R. Mace, R. Garziera: Wave propagation in laminated cylinders with internal fluid and residual stress. Applied Sciences 13 (2023) 5227. [Google Scholar]
  34. Y. Yang, B.R. Mace, M.J. Kingan: Prediction of sound transmission through, and radiation from, panels using a wave and finite element method. The Journal of the Acoustical Society of America 141 (2017) 2452–2460. [Google Scholar]
  35. V. Cool, R. Boukadia, L. Van Belle, W. Desmet, E. Deckers: Contribution of the wave modes to the sound transmission loss of inhomogeneous periodic structures using a wave and finite element based approach. Journal of Sound and Vibration 537 (2022) 117183. [Google Scholar]
  36. V. Cotoni, R.S. Langley, P.J. Shorter: A statistical energy analysis subsystem formulation using finite element and periodic structure theory. Journal of Sound and Vibration 318 (2008) 1077–1108. [Google Scholar]
  37. S. Ghinet, N. Atalla: Vibro-acoustic behaviour of flat sandwich composite panels. Transactions of The Canadian Society for Mechanical Engineering 30 (2006) 473–493. [Google Scholar]
  38. F.G. Leppington, E.G. Broadbent, K.H. Heron: The acoustic radiation efficiency of rectangular panels. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382 (1982) 245–271. [Google Scholar]
  39. F.G. Leppington, K.H. Heron, E.G. Broadbent: Resonant and non-resonant transmission of random noise through complex plates. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 458 (2002) 683–704. [Google Scholar]
  40. R. Zhou, M.J. Crocker: Sound transmission loss of foam-filled honeycomb sandwich panels using statistical energy analysis and theoretical and measured dynamic properties. Journal Of Sound And Vibration 329 (2010)673–686. [Google Scholar]
  41. J.F. Allard, N. Atalla: Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials (2009) 1–358. [Google Scholar]
  42. Y. Yu, C. Hopkins: Reduced order integration for the radiation efficiency of a rectangular plate. JASA Express Letters 1 (2021) 062801. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.