Open Access
Issue
Acta Acust.
Volume 4, Number 5, 2020
Article Number 21
Number of page(s) 15
Section Hearing, Audiology and Psychoacoustics
DOI https://doi.org/10.1051/aacus/2020020
Published online 14 October 2020
  1. N.I. Durlach, A. Rigopulos, X.D. Pang, W.S. Woods, A. Kulkarni, H.S. Colburn, E.M. Wenzel: On the externalization of auditory images. Presence: Teleoperators & Virtual Environments 10, 2 (1992) 251–257. [CrossRef] [Google Scholar]
  2. J. Blauert: The Technology of Binaural Listening. Springer, Heidelberg, Berlin, 2013. [CrossRef] [Google Scholar]
  3. F.L. Wightman, D.J. Kistler: Headphone simulation of free–field listening. I: Stimulus synthesis. Journal of the Acoustical Society of America 85 (1988) 858–867. [CrossRef] [Google Scholar]
  4. M. Vorländer: Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality. Springer, Heidelberg, Berlin, 2008. [Google Scholar]
  5. A.J. Kolarik, B.C.J. Moore, P. Zahorik, S. Cirstea, S. Pardhan: Auditory distance perception in humans: A review of cues, development, neuronal bases, and effects of sensory loss. Attention, Perception, & Psychophysics 78, 2 (2016) 373–395. [CrossRef] [Google Scholar]
  6. W.M. Hartmann, A. Wittenberg: On the externalization of sound images. Journal of the Acoustical Society of America 99 (1996) 3678–3688. [CrossRef] [Google Scholar]
  7. A. Kulkarni, H.S. Colburn: Role of spectral detail in sound-source localization. Nature 3960, 6713 (1998) 747. [Google Scholar]
  8. R. Baumgartner, D.K. Reed, B. Tóth, V. Best, P. Majdak, H.S. Colburn, B. Shinn-Cunningham: Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. Proceedings of the National Academy of Sciences 1140, 36 (2017) 9743–9748. [Google Scholar]
  9. D.R. Begault, E.M. Wenzel, M.R. Anderson: Direct comparison of the impact of head tracking, reverberation, and individualized Head-related transfer functions on the spatial perception of a virtual speech source. Journal of the Audio Engineering Society 49 (2001) 904–916. [Google Scholar]
  10. S. Werner, F. Klein, T. Mayenfels, K. Brandenburg: A summary on acoustic room divergence and its effect on externalization of auditory events, in 8th International Conference on Quality of Multimedia Experience (QoMEX), IEEE. 2016, pp. 1–6. [Google Scholar]
  11. J.C. Gil-Carvajal, J. Cubick, S. Santurette, T. Dau: Spatial hearing with incongruent visual or auditory room cues. Scientific Reports 6 (2016) 37342. [CrossRef] [PubMed] [Google Scholar]
  12. F. Völk: Externalization in data-based binaural synthesis: Effects of impulse response length, in Tagungsband Fortschritte der Akustik-DAGA 2009. 2009, pp. 1075–1078. [Google Scholar]
  13. R. Crawford-Emery, H. Lee: The subjective effect of BRIR length perceived headphone sound externalisation and tonal colouration, in 136th Audio Engineering Society Convention. 2014. [Google Scholar]
  14. J. Catic, S. Santurette, T. Dau: The role of reverberation-related binaural cues in the externalization of speech. Journal of the Acoustical Society of America 138 (2015) 1154–1167. [CrossRef] [Google Scholar]
  15. S. Li, R. Schlieper, J. Peissig: The effect of variation of reverberation parameters in contralateral versus ipsilateral ear signals on perceived externalization of a lateral sound source in a listening room. Journal of the Acoustical Society of America 1440, 2 (2018) 966–980. [CrossRef] [Google Scholar]
  16. B.G. Shinn-Cunningham, N. Kopco, T.J. Martin: Localizing nearby sound sources in a classroom: Binaural room impulse responses. Journal of the Acoustical Society of America 117 (2005) 3100–3115. [CrossRef] [Google Scholar]
  17. H.G. Hassager, F. Gran, T. Dau: The role of spectral detail in the binaural transfer function on perceived externalization in a reverberant environment. Journal of the Acoustical Society of America 139 (2016) 2992–3000. [CrossRef] [Google Scholar]
  18. S. Li, R. Schlieper, J. Peissig: The role of reverberation and magnitude spectra of direct parts in contralateral and ipsilateral ear signals on perceived externalization. Applied Sciences 90, 3 (2019) 460. [CrossRef] [Google Scholar]
  19. R. Baumgartner, P. Majdak, B. Laback: Modeling the effects of sensorineural hearing loss on sound localization in the median plane. Trends in Hearing 20 (2016) 1–11. [Google Scholar]
  20. G. Plenge: Über das problem der im-kopf-lokalisation (The problem of in-head lokalization). Acustica 26 (1972) 241–252. [Google Scholar]
  21. C. Mendonça: A review on auditory space adaptations to altered head-related cues. Frontiers in Neuroscience 8 (2014) 219. [CrossRef] [PubMed] [Google Scholar]
  22. R.F. Lyon: All-pole models of auditory filtering, in Diversity in Auditory Mechanics Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E, Editors, World Scientific Publishing, Singapore. 1997, pp. 205–211. [Google Scholar]
  23. B.R. Glasberg, B.C.J. Moore: Derivation of auditory filter shapes from notched-noise data. Hearing Research 47 (1990) 103–138. [CrossRef] [PubMed] [Google Scholar]
  24. R. Baumgartner, P. Majdak, B. Laback: Modeling sound-source localization in sagittal planes for human listeners. Journal of the Acoustical Society of America 2, 1360 (2014) 791–802. [CrossRef] [Google Scholar]
  25. H. Wallach, E.B. Newman, M.R. Rosenzweig: The precedence effect in sound localization. The American Journal of Psychology 62 (1949) 315–336. [CrossRef] [PubMed] [Google Scholar]
  26. J. Braasch: A precedence effect model to simulate localization dominance using an adaptive, stimulus parameter-based inhibition process. Journal of the Acoustical Society of America 1, 1340 (2013) 420–435. [CrossRef] [Google Scholar]
  27. R. Baumgartner, P. Majdak: Decision making in auditory externalization perception. Preprint (2020). bioRxiv 2020.04.30.068817, https://doi.org/10.1101/2020.04.30.068817. [Google Scholar]
  28. S. Müller, P. Massarani: Transfer-function measurement with sweeps. Journal of the Audio Engineering Society 49 (2001) 443–471. [Google Scholar]
  29. S. Li, J. Peissig: Measurement of head-related transfer functions: A review. Applied Sciences 10, 14 (2020) 5014. [CrossRef] [Google Scholar]
  30. A. Kulkarni, S.K. Isabelle, H.S. Colburn: On the minimum-phase approximation of head-related transfer functions, in Proceedings of 1995 Workshop on Applications of Signal Processing to Audio and Accoustics, IEEE. 1995, pp. 84–87. [Google Scholar]
  31. Z. Schärer, A. Lindau: Evaluation of equalization methods for binaural signals, in 126th Audio Engineering Society Convention. 2009. [Google Scholar]
  32. W.O. Brimijoin, A.W. Boyd, M.A. Akeroyd: The contribution of head movement to the externalization and internalization of sounds. PLoS One 8 (2013) 1–12. [Google Scholar]
  33. F.L. Wightman, D.J. Kistler: Monaural sound localization revisited. Journal of the Acoustical Society of America 1010, 2 (1997) 1050–1063. [CrossRef] [Google Scholar]
  34. A. Kohlrausch, J. Breebaart: Perceptual (ir) relevance of HRTF magnitude and phase spectra, in 110th Audio Engineering Society Convention. 2001. [Google Scholar]
  35. P. Majdak, R. Baumgartner, B. Laback: Acoustic and non-acoustic factors in modeling listener-specific performance of sagittal-plane sound localization. Frontiers in Psychology 5 (2014) 319. [CrossRef] [PubMed] [Google Scholar]
  36. F. Klein, S. Werner, T. Mayenfels: Influences of training on externalization of binaural synthesis in situations of room divergence. Journal of the Audio Engineering Society 65, 3 (2017) 178–187. [CrossRef] [Google Scholar]
  37. E.R. Calcagno, E.L. Abregu, M.C. Egua, R. Vergara: The role of vision in auditory distance perception. Perception 41, 2 (2012) 175–192. [CrossRef] [PubMed] [Google Scholar]
  38. T. Leclère, M. Lavandier, F. Perrin: On the externalization of sound sources with headphones without reference to a real source. Journal of the Acoustical Society of America 146, 4 (2019) 2309–2320. [CrossRef] [Google Scholar]
  39. E. Hendrickx, P. Stitt, J.C. Messonnier, J.M. Lyzwa, B.F.G. Katz, C. Boishéraud: Influence of head tracking on the externalization of speech stimuli for non-individualized binaural synthesis. Journal of the Acoustical Society of America 141 (2017) 2011–2023. [CrossRef] [Google Scholar]
  40. P. Søndergaard, P. Majdak: The auditory modeling toolbox, in The Technology of Binaural Listening Blauert J, Editors, Springer, Berlin, Heidelberg. 2013, pp. 33–56. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.