Open Access
Issue
Acta Acust.
Volume 4, Number 5, 2020
Article Number 19
Number of page(s) 16
Section Virtual Acoustics
DOI https://doi.org/10.1051/aacus/2020014
Published online 12 October 2020
  1. Y. Aloimonos: Active Perception, ser. Computer Vision. Lawrence Erlbaum Associates Inc, Hillsdale, NJ, US, 1993. [Google Scholar]
  2. J. Blauert: Spatial Hearing: The Psychophysics of Human Sound Localization. MIT Press, 1997. [Google Scholar]
  3. A. Lindau, S. Weinzierl: Assessing the plausibility of virtual acoustic environments. Acta Acustica United With Acustica 98, 5 (2012) 804–810. https://doi.org/10.3813/AAA.918562. [CrossRef] [Google Scholar]
  4. B.B. Bauer: Stereophonic earphones and binaural loudspeakers. The Journal of the Audio Engineering Society 9, 2 (1961) 148–151. [Google Scholar]
  5. B.S. Atal, M.R. Schroeder: Apparent sound source translator. United States Patent 3,236,949, 1966. [Google Scholar]
  6. J. Bauck, D.H. Cooper: Generalized transaural stereo and applications. The Journal of the Audio Engineering Society 44, 9 (1996) 683–705. [Google Scholar]
  7. B. Sanches Masiero: Individualized binaural technology: Measurement, equalization and perceptual evaluation, Ph.D. dissertation. Institute of Technical Acoustics, RWTH Aachen University, Germany, 2012. [Google Scholar]
  8. P. Fellgett: Ambisonics. Part one: General system description. Studio Sound 17, 8 (1975) 20–22. [Google Scholar]
  9. M.A. Gerzon: Ambisonics. Part two: Studio techniques. Studio Sound 17, 8 (1975) 24–26. [Google Scholar]
  10. M.A. Gerzon: Ambisonics in multichannel broadcasting and video. The Journal of the Audio Engineering Society 33, 11 (1985) 859–871. [Google Scholar]
  11. J. Daniel, J.-B. Rault, J.-D. Polack: Ambisonics encoding of other audio formats for multiple listening conditions, in Audio Engineering Society Convention 105. 1998. [Google Scholar]
  12. J. Daniel: Représentation de champs acoustiques, applicationa la transmission eta la reproduction de scenes sonores complexes dans un contexte multimédia, Ph.D. dissertation. Université de Paris, France, 2000. [Google Scholar]
  13. F. Zotter, M. Frank: A Practical 3D Audio Theory for Recording, Studio Production, Sound Reinforcement, and Virtual Reality. Springer International Publishing, 2019. https://doi.org/10.1007/978-3030-17207-7. [Google Scholar]
  14. K. Wendt: Das Richtungshören bei der Überlagerung zweier Schallfelder bei Intensitäts-und Laufzeitstereophonie, Ph.D. dissertation. Rheinisch-Westfälische Technische Hochschule Aachen, 1963. [Google Scholar]
  15. V. Pulkki: Uniform spreading of amplitude panned virtual sources, in Applications of Signal Processing to Audio and Acoustics, 1999 IEEE Workshop on. 1999, pp. 187–190. https://doi.org/10.1109/ASPAA.1999.810881. [CrossRef] [Google Scholar]
  16. V. Pulkki, Spatial sound generation and perception by amplitude panning techniques, Ph.D. dissertation. Helsinki University of Technology Laboratory of Acoustics and Audio Signal Processing, Finland, 2001, pp. 1456–6303. [Google Scholar]
  17. A.J. Berkhout: A holographic approach to acoustic control. The Journal of the Audio Engineering Society 36, 12 (1988) 977–995. [Google Scholar]
  18. A.J. Berkhout, D. de Vries, P. Vogel: Acoustic control by wave field synthesis. The Journal of the Acoustical Society of America 93, 5 (1993) 2764–2778. https://doi.org/10.1121/1.405852. [Google Scholar]
  19. S. Spors, H. Wierstorf, A. Raake, F. Melchior, M. Frank, F. Zotter: Spatial sound with loudspeakers and its perception: A review of the current state, Proceedings of the IEEE 101, 9 (2013) 1920–1938. https://doi.org/10.1109/JPROC.20132264784. [Google Scholar]
  20. J.M. Zmoelnig, A. Sontacchi, W. Ritsch: The IEM-Cube, a periphonic re-/production system, in Audio Engineering Society Conference: 24th International Conference: Multichannel Audio, The New Reality. 2003. [Google Scholar]
  21. M. Noisternig, T. Carpentier, O. Warusfel: ESPRO 2.0 – Implementation of a surrounding 350-loudspeaker array for 3D sound field reproduction, in Audio Engineering Society Conference: UK 25th Conference: Spatial Audio in Today’s 3D World. 2012. [Google Scholar]
  22. L. Gandemer, G. Parseihian, C. Bourdin, Perception of surrounding sound source trajectories in the horizontal plane: A comparison of VBAP and basic-decoded HOA, Acta Acustica United With Acustica 104, 2 (2018) 338–350. https://doi.org/10.3813/AAA.919176. [CrossRef] [Google Scholar]
  23. M. Frank: Phantom sources using multiple loudspeakers in the horizontal plane, Ph.D. dissertation. Institute of Electronic Music and Acoustics, University of Music and Performing Arts Graz, Austria, 2013. [Google Scholar]
  24. F.M. Fazi: Sound field reproduction, Ph.D. dissertation. Institute of Sound and Vibration Research, University of Southampton, England, 2010. [Google Scholar]
  25. A. Ahrens: Characterizing auditory and audio-visual perception in virtual environments, Ph.D. dissertation. Hearing Systems Section, Department of Health Technology, Technical University of Denmark, 2019. [Google Scholar]
  26. M. Otani, H. Shigetani: Reproduction accuracy of higher-order Ambisonics with Max-rE and/or least norm solution in decoding. Acoustical Science and Technology 40, 1 (2019) 23–28. [Google Scholar]
  27. A. Parthy, C. Jin, A. van Schaik, Evaluation of a concentric rigid and open spherical microphone array for sound reproduction, in Proceedings of Ambisonics Symposium. 2009. [Google Scholar]
  28. E. Fernandez-Grande: Sound field reconstruction using a spherical microphone array. The Journal of the Acoustical Society of America 139, 3 (2016) 1168–1178. https://doi.org/10.1121/1.4943545. [CrossRef] [PubMed] [Google Scholar]
  29. P. Minnaar, S.F. Albeck, C.S. Simonsen, B. Søndersted, S.A.D. Oakley, J. Bennedbæk: Reproducing real-life listening situations in the laboratory for testing hearing aids, in Audio Engineering Society Convention 135. 2013. [Google Scholar]
  30. C. Oreinos, J.M. Buchholz: Evaluation of loudspeaker-based virtual sound environments for testing directional hearing aids. Journal of the American Academy of Audiology 27, 7 (2016) 541–556. https://doi.org/10.3766/jaaa.15094. [CrossRef] [PubMed] [Google Scholar]
  31. J. Cubick, T. Dau: Validation of a virtual sound environment system for testing hearing aids. Acustica United With Acta Acustica 102 (2016) 547–557. https://doi.org/10.3813/AAA.918972. [CrossRef] [Google Scholar]
  32. J.C. Middlebrooks: Virtual localization improved by scaling non-individualized external-ear transfer functions in frequency. The Journal of the Acoustical Society of America 106, 3 (1999) 1493–1510. https://doi.org/10.1121/1.427147. [CrossRef] [PubMed] [Google Scholar]
  33. R. Bomhardt: Anthropometric individualization of head-related transfer functions: Analysis and modeling, Ph.D. dissertation. Teaching and Research Area of Medical Acoustics, Institute of Technical Acoustics, RWTH Aachen University, Germany, Berlin, 2017. [Google Scholar]
  34. A.W. Bronkhorst: Localization of real and virtual sound sources. The Journal of the Acoustical Society of America 98, 5 (1995) 2542–2553. https://doi.org/10.1121/1.413219. [Google Scholar]
  35. D. Schröder: Physically based real-time auralization of interactive virtual environments, Ph.D. dissertation. Institute of Technical Acoustics, RWTH Aachen University, Germany, 2011. [Google Scholar]
  36. B.N.J. Postma, B.F.G. Katz: Perceptive and objective evaluation of calibrated room acoustic simulation auralizations. Journal of the Acoustical Society of America 140, 6 (2016) 4326–4337. https://doi.org/10.1121/1.4971422. [CrossRef] [Google Scholar]
  37. F. Brinkmann, L. Aspöck, D. Ackermann, S. Lepa, M. Vorländer, S. Weinzierl: A round robin on room acoustical simulation and auralization. Journal of the Acoustical Society of America 145, 4 (2019) 2746–2760. https://doi.org/10.1121/1.5096178. [CrossRef] [Google Scholar]
  38. L. Rossi, A. Prato, L. Lesina, A. Schiavi: Effects of low-frequency noise on human cognitive performances in laboratory. Building Acoustics 25, 1 (2018) 17–33. https://doi.org/10.1177/1351010X18756800. [CrossRef] [Google Scholar]
  39. S. Rizzi, B. Sullivan: Synthesis of virtual environments for aircraft community noise impact studies, in 11th AIAA/CEAS Aeroacoustics Conference. 2005, p. 2983. [Google Scholar]
  40. I. Muhammad, M. Vorländer, S.J. Schlittmeier: Audio-video virtual reality environments in building acoustics: An exemplary study reproducing performance results and subjective ratings of a laboratory listening experiment. The Journal of the Acoustical Society of America 146, 3 (2019) EL310–EL316. https://doi.org/10.1121/1.5126598. [Google Scholar]
  41. L.L. Beranek, H.P. Sleeper: The design and construction of anechoic sound chambers. The Journal of the Acoustical Society of America 18, 1 (1946) 140–150. https://doi.org/10.1121/1.1916351. [Google Scholar]
  42. P. Leopardi: A partition of the unit sphere into regions of equal area and small diameter. Electronic Transactions on Numerical Analysis 25, 12 (2006) 309–327. [Google Scholar]
  43. M. Berzborn, R. Bomhardt, J. Klein, J.-G. Richter, M. Vorländer: The ITA-Toolbox: An open source MATLAB toolbox for acoustic measurements and signal processing, in 43th Annual German Congress on Acoustics, Kiel (Germany), 6–9 Mar 2017. 2017, pp. 222–225. [Google Scholar]
  44. W.G. Gardner: Head tracked 3-D audio using loudspeakers, in Proceedings of 1997 Workshop on Applications of Signal Processing to Audio and Acoustics, IEEE. 1997, p. 4. [Google Scholar]
  45. T. Lentz, Dynamic crosstalk cancellation for binaural synthesis in virtual reality environments, The Journal of the Audio Engineering Society 54, 4 (2006) 283–294. [Google Scholar]
  46. G. Grimm, J. Luberadzka, T. Herzke, V. Hohmann: Toolbox for acoustic scene creation and rendering (TASCAR): Render methods and research applications, in Proceedings of the Linux Audio Conference. 2015, pp. 9–12. [Google Scholar]
  47. R.A. Viveros Munoz: Speech perception in complex acoustic environments: Evaluating moving maskers using virtual acoustics, Ph.D. dissertation. Teaching and Research Area of Medical Acoustics, Institute of Technical Acoustics, RWTH Aachen University, Germany, 2019. https://doi.org/10.18154/RWTH-2019-07497. [Google Scholar]
  48. OptiTrack, NaturalPoint Inc: Flex 13. https://optitrack.com/products/flex-13/, Accessed on 2020-03-24. [Google Scholar]
  49. M. Geier, S. Spors: Spatial audio with the soundscape renderer, in 27th Tonmeistertagung, Köln, VDT International Convention. 2012. [Google Scholar]
  50. Institute of Technical Acoustics, RWTH Aachen University: Virtual acoustics – A real-time auralization framework for scientific research. http://www.virtualacoustics.org/, Accessed on 2020-04-21. [Google Scholar]
  51. M. Zaunschirm, C. Schörkhuber, R. Höldrich: Binaural rendering of Ambisonic signals by headrelated impulse response time alignment and a diffuseness constraint. The Journal of the Acoustical Society of America 143, 6 (2018) 3616–3627. https://doi.org/10.1121/1.5040489. [CrossRef] [PubMed] [Google Scholar]
  52. Institute of Technical Acoustics, RWTH Aachen University: Bassyst 2.1. 2020. http://www.bassyst.de/, Accessed on 2020-03-25. [Google Scholar]
  53. M.A. Gerzon: General metatheory of auditory localisation, in Audio Engineering Society Convention 92. 1992. [Google Scholar]
  54. Y. Makita: On the directional localization of sound in the stereophonic sound field. EBU Review 73, 2 (1962) 1536–1539. [Google Scholar]
  55. F. Zotter, M. Frank, H. Pomberger: Comparison of energy-preserving and all-round ambisonic decoders, in Fortschritte der Akustik, AIADAGA, (Meran). 2013. [Google Scholar]
  56. A. Politis: Microphone array processing for parametric spatial audio techniques, Ph.D. dissertation. Aalto University, Finland, 2016. [Google Scholar]
  57. F. Zotter, M. Frank: All-round Ambisonic panning and decoding. The Journal of the Audio Engineering Society 60, 10 (2012) 807–820. [Google Scholar]
  58. J.-M. Jot, V. Larcher, J.-M. Pernaux: A comparative study of 3-D audio encoding and rendering techniques, in Audio Engineering Society Conference: 16th International Conference: Spatial Sound Reproduction. 1999. [Google Scholar]
  59. F. Zotter, Sampling strategies for acoustic holography/holophony on the sphere. NAG-DAGA, Rotterdam, 2009, pp. 1–4. [Google Scholar]
  60. S. Bertet, J. Daniel, S. Moreau: 3D sound field recording with higher order ambisonics – Objective measurements and validation of spherical microphone, in Audio Engineering Society Convention 120. 2006. [Google Scholar]
  61. J. Daniel: Spatial sound encoding including near field effect: Introducing distance coding filters and a viable, new ambisonic format, in Audio Engineering Society Conference: 23rd International Conference: Signal Processing in Audio Recording and Reproduction. 2003. [Google Scholar]
  62. D.G. Malham, A. Myatt: 3-D sound spatialization using ambisonic techniques. Computer Music Journal 19, 4 (1995) 58–70. [CrossRef] [Google Scholar]
  63. M.A. Poletti: A unified theory of horizontal holographic sound systems. The Journal of the Audio Engineering Society 48, 12 (2000) 1155–1182. [Google Scholar]
  64. F. Zotter, H. Pomberger, M. Noisternig: Energy preserving ambisonic decoding. Acta Acustica United With Acustica 98, 1 (2012) 37–47. https://doi.org/10.3813/AAA.918490. [CrossRef] [Google Scholar]
  65. R.H. Hardin, N.J.A. Sloane: McLaren’s improved snub cube and other new spherical designs in three dimensions. Discrete & Computational Geometry 15, 4 (1996) 429–441. https://doi.org/10.1007/BF02711518. [Google Scholar]
  66. B. Masiero, M. Vorländer: A framework for the calculation of dynamic crosstalk cancellation filters. IEEE/ACM Transactions on Audio, Speech, and Language Processing 22, 9 (2014) 1345–1354. [Google Scholar]
  67. J. Fels, M. Vorländer: Anthropometric parameters influencing head-related transfer functions. Acta Acustica United With Acustica 95, 2 (2009) 331–342. https://doi.org/10.3813/AAA.918156. [CrossRef] [Google Scholar]
  68. P. Majdak, B. Masiero, J. Fels: Sound localization in individualized and non-individualized crosstalk cancellation systems. The Journal of the Acoustical Society of America 133, 4 (2013) 2055–2068. https://doi.org/10.1121/1.4792355. [CrossRef] [PubMed] [Google Scholar]
  69. Acoustics Research Institute, Austrian Academy of Sciences: ARI HRTF database. 2020. https://www.kfs.oeaw.ac.at/index.php?view=article&id=608&lang=en, Accessed on 2020-07-20. [Google Scholar]
  70. K. Watanabe, Y. Iwaya, Y. Suzuki, S. Takane, Sato: Dataset of head-related transfer functions measured with a circular loudspeaker array. Acoustical Science and Technology 35, 3 (2014) 159–165. https://doi.org/10.1250/ast.35.159. [Google Scholar]
  71. Institut de Recherche et Coordination Acoustique/Musique: Listen HRTF database. 2020. http://recherche.ircam.fr/equipes/salles/listen/, Accessed on 2020-07-20 [Google Scholar]
  72. R. Bomhardt, M. de la Fuente Klein, J. Fels: A high-resolution head-related transfer function and three-dimensional ear model database. Proceedings of Meetings on Acoustics 29, 1 (2016) 050 002. https://doi.org/10.1121/2.0000467. [Google Scholar]
  73. Y.L. Parodi, P. Rubak: A subjective evaluation of the minimum channel separation for reproducing binaural signals over loudspeakers. The Journal of the Audio Engineering Society 59, 7/8 (2011) 487–497. [Google Scholar]
  74. Y.L. Parodi, P. Rubak: Objective evaluation of the sweet spot size in spatial sound reproduction using elevated loudspeakers. The Journal of the Acoustical Society of America 128, 3 (2010) 1045–1055. https://doi.org/10.1121/1.3467763. [CrossRef] [PubMed] [Google Scholar]
  75. A. Schmitz: Ein neues digitales Kunstkopfmeßsystem. Acta Acustica United With Acustica 81, 4 (1995) 416–420. [Google Scholar]
  76. V. Valimaki, T.I. Laakso: Principles of fractional delay filters, in 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), Vol. 6. 2000, pp. 3870–3873. [Google Scholar]
  77. U. Zölzer: DAFX: Digital Audio Effects. John Wiley & Sons, 2011. [CrossRef] [Google Scholar]
  78. ISO 1996-1: Acoustics – Description, measurement and assessment of environmental noise – Part 1: Basic quantities and assessment procedures. International Organization for Standardization, Geneva, Switzerland, Norm ISO 1996-1:2016, 2016. [Google Scholar]
  79. A. Sæbø: Influence of reflections on crosstalk cancelled playback of binaural sound, Ph.D. dissertation. Faculty of Information Technology, Electrical Engineering, Norwegian University of Science, and Technology, Norway, 2001. [Google Scholar]
  80. M. Kohnen, J. Stienen, L. Aspöck, M. Vorländer: Performance evaluation of a dynamic crosstalk cancellation system with compensation of early reflections, in Audio Engineering Society Conference: 2016 AES International Conference on Sound Field Control, 2016, pp. 1–8. [Google Scholar]
  81. ITU-R BS.1116-3: Methods for the subjective assessment of small impairments in audio systems including multichannel sound systems. International Telecommunication Union, Geneva, Switzerland, Recommendation ITU-R BS.1116-3 (02/2015), 2015. [Google Scholar]
  82. S. Pelzer, L. Aspöck, D. Schröder, M. Vorländer, Interactive real-time simulation and auralization for modifiable rooms, Building Acoustics 211 (2014) 65–73. https://doi.org/10.1260/1351-010X.21.1.65. [CrossRef] [Google Scholar]
  83. B. Seeber, S. Kerber, E. Hafter: A system to simulate and reproduce audio-visual environments for spatial hearing research. Hearing Research 260, 1–2 (2010) 1–10. https://doi.org/10.1016/j.heares.2009.11.004. [CrossRef] [PubMed] [Google Scholar]
  84. B. Rafaely: Plane-wave decomposition of the sound field on a sphere by spherical convolution. The Journal of the Acoustical Society of America 116, 4 (2004) 2149–2157. https://doi.org/10.1121/1.1792643. [Google Scholar]
  85. R.C. Heyser: Instantaneous intensity, in Audio Engineering Society Convention 81. 1986. [Google Scholar]
  86. H. Hacıhabibŏglu: Theoretical analysis of open spherical microphone arrays for acoustic intensity measurements. IEEE/ACM Transactions on Audio, Speech, and Language Processing 22, 2 (2014) 465–476. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.