Open Access
Issue
Acta Acust.
Volume 4, Number 5, 2020
Article Number 18
Number of page(s) 11
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2020018
Published online 29 October 2020
  1. A.H. Benade: Fundamentals of Musical Acoustics. Oxford University Press, London, 1976. [Google Scholar]
  2. L. Brillouin, M. Parodi: Wave propagation in periodic structures. Mc Graw Hill, New York, NY, USA, 1946. [Google Scholar]
  3. J. Jordania: Garland Encyclopedia of World Music. Volume 8 – Europe: Part 3: Music Cultures of Europe: Bulgaria. Routledge, New York, 1981. [Google Scholar]
  4. J. Wolfe, J. Smith: Cutoff frequencies and cross fingerings in baroque, classical, and modern flutes. Journal of the Acoustical Society of America 114, 4 (2003) 2263–2272. [CrossRef] [Google Scholar]
  5. J. Wolfe: http://newt.phys.unsw.edu.au/music/. Website about musical acoustics. [Google Scholar]
  6. A.H. Benade, S.J. Lutgen: The saxophone spectrum. Journal of the Acoustical Society of America 83 (1988) 1900–1907. [CrossRef] [Google Scholar]
  7. E. Petersen, T. Colinot, J. Kergomard, P. Guillemain: On the tonehole lattice cutoff frequency of conical resonators: applications to the saxophone. Acta Acustica united with Acustica, Under review (2020). [Google Scholar]
  8. A.H. Benade: On the mathematical theory of woodwind finger holes. Journal of the Acoustical Society of America 32 (1960) 1591–1608. [CrossRef] [Google Scholar]
  9. D.H. Keefe: Woodwind tone hole acoustics and the spectrum transformation function. PhD thesis, Department of Physics, Case Western Reserve University, 1981. [Google Scholar]
  10. E. Moers, J. Kergomard: On the cutoff frequency of clarinet-like instruments. Geometrical versus acoustical regularity. Acta Acustica united with Acustica 97 (2011) 984–996. [CrossRef] [Google Scholar]
  11. A. Chaigne, J. Kergomard: Acoustics of Musical Instruments. Springer-Verlag, New York, 2016 (English translation). [CrossRef] [Google Scholar]
  12. E. Petersen, P. Guillemain, J. Kergomard, T. Colinot: The effect of the cutoff frequency on the sound production of a clarinet-like instrument. Journal of the Acoustical Society of America 145, 6 (2019) 3784–3794. [CrossRef] [Google Scholar]
  13. D.H. Keefe: Woodwind air column models. Journal of the Acoustical Society of America 88 (1990) 35–51. [CrossRef] [Google Scholar]
  14. A.H. Benade, S.N. Kouzoupis: The clarinet spectrum: theory and experiment. Journal of the Acoustical Society of America 83, 1 (1988) 292–304. [CrossRef] [Google Scholar]
  15. A.H. Benade, C.O. Larson: Requirements and techniques for measuring the musical spectrum of the clarinet. Journal of the Acoustical Society of America 78, 5 (1985) 1475–1498. [CrossRef] [Google Scholar]
  16. A.H. Benade: From instrument to ear in a room: direct or via recording. Journal of the Audio Engineering Society 33, 4 (1985) 218–233. [Google Scholar]
  17. V. Chatziioannou, M. van Walstijn: Estimation of clarinet reed parameters by inverse modelling. Acta Acustica united with Acustica 98, 4 (2012) 629–639. [CrossRef] [Google Scholar]
  18. A. Lefebvre, G.P. Scavone, J. Kergomard: External tonehole interactions in woodwind instruments. Acta Acustica united with Acustica 99 (2013) 975–985. [CrossRef] [Google Scholar]
  19. T.A. Wilson, G.S. Beavers: Operating modes of the clarinet. Journal of the Acoustical Society of America 56, 2 (1974) 653–658. [Google Scholar]
  20. W.L. Coyle, P. Guillemain, J. Kergomard, J.-P. Dalmont: Predicting playing frequencies for clarinets: A comparison between numerical simulations and simplified analytical formulas. Journal of the Acoustical Society of America 138, 5 (2015) 2770–2781. [CrossRef] [Google Scholar]
  21. B. Gazengel, J. Gilbert, N. Amir: Time domain simulation of single reed wind instrument. From the measured input impedance to the synthesis signal. Where are the traps? Acta Acustica united with Acustica 3 (1995) 445–472. [Google Scholar]
  22. S. Bilbao, A. Torin, V. Chatziioannou: Numerical modeling of collisions in musical instruments. Acta Acustica united with Acustica 101 (2015) 155–173. [CrossRef] [Google Scholar]
  23. T. Colinot, L. Guillot, C. Vergez, P. Guillemain, J.-B. Doc, B. Cochelin: Influence of the “ghost reed” simplification on the bifurcation diagram of a saxophone model. Acta Acustica united with Acustica 105, 6 (2019) 1291–1294. [CrossRef] [Google Scholar]
  24. A. Almeida, D. George, J. Smith, J. Wolfe: The clarinet: How blowing pressure, lip force, lip position and reed “hardness” affect pitch, sound level, and spectrum. The Journal of the Acoustical Society of America 134 (2013) 2247–2255. [CrossRef] [PubMed] [Google Scholar]
  25. J.-P. Dalmont, J. Gilbert, S. Ollivier: Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements. The Journal of the Acoustical Society of America 114, 4 (2003) 2253–2262. [CrossRef] [PubMed] [Google Scholar]
  26. S. Karkar, C. Vergez, B. Cochelin: Oscillation threshold of a clarinet model: A numerical continuation approach. The Journal of the Acoustical Society of America 131 (2012) 698–707. [CrossRef] [PubMed] [Google Scholar]
  27. F. Silva, J. Kergomard, C. Vergez, J. Gilbert: Interaction of reed and acoustic resonator in clarinetlike systems. The Journal of the Acoustical Society of America 124, 5 (2008) 3284–3295. [CrossRef] [PubMed] [Google Scholar]
  28. S. Weinzierl, M. Vorländer, G. Behler, F. Brinkmann, H. Von Coler, E. Detzner, J. Krämer, A. Lindau, M. Pollow, F. Schulz, N.R. Shabtai: A database of anechoic microphone array measurements of musical instruments (2017) Doi: 10.14279/depositonce-5861. [Google Scholar]
  29. T. Grothe, P. Wolf: A study of sound characteristics of a new bassoon as compared to the modern German bassoon. Stockholm Music Acoustics Conference (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.