Open Access
Scientific Article
Issue
Acta Acust.
Volume 4, Number 6, 2020
Article Number 25
Number of page(s) 18
Section Virtual Acoustics
DOI https://doi.org/10.1051/aacus/2020024
Published online 18 November 2020
  1. M. Vorländer: Auralization. Springer Publishing, 2010. [Google Scholar]
  2. L. Savioja, J. Huopaniemi, T. Lokki, R. Väänänen: Creating interactive virtual acoustic environments. Journal of the Audio Engineering Society 47, 9 (1999) 675–705. [Google Scholar]
  3. F. Brinkmann, L. Aspöck, D. Ackermann, S. Lepa, M. Vorländer, S. Weinzierl: A round robin on room acoustical simulation and auralization. The Journal of the Acoustical Society of America 145, 4 (2019) 2746–2760. [CrossRef] [PubMed] [Google Scholar]
  4. T. Pihlajamäki, V. Pulkki: Synthesis of complex sound scenes with transformation of recorded spatial sound in virtual reality. Journal of the Audio Engineering Society 7/8, 63 (2015) 542–551. [CrossRef] [Google Scholar]
  5. E. Fernandez-Grande: Sound field reconstruction using a spherical microphone array. The Journal of the Acoustical Society of America 139, 3 (2016) 1168–1178. [CrossRef] [PubMed] [Google Scholar]
  6. A. Plinge, S.J. Schlecht, O. Thiergart, T. Robotham, O. Rummukainen, E. Habets: Six-degrees-of-freedom binaural audio reproduction of first-order ambisonics with distance information, in Audio Engineering Society Conference: 2018 AES International Conference on Audio for Virtual and Augmented Reality. 2018. [Google Scholar]
  7. A. Allen: Ambisonic Soundfield Navigation using Directional Decomposition And Path Distance Estimation. US Patent and Trademark Office, Washington DC, 2019. US Patent No. 10,182,303. [Google Scholar]
  8. M. Kentgens, A. Behler, P. Jax: Translation of a higher order ambisonics sound scene based on parametric decomposition, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 151–155. [Google Scholar]
  9. F. Schultz, S. Spors: Data-based binaural synthesis including rotational and translatory head-movements, in Audio Engineering Society Conference: 2013 AES International Conference on Sound Field Control-Engineering and Perception. 2013. [Google Scholar]
  10. Y. Wang, K. Chen: Translations of spherical harmonics expansion coefficients for a sound field using plane wave expansions. The Journal of the Acoustical Society of America 143 (2018) 3474–3478. [CrossRef] [PubMed] [Google Scholar]
  11. N. Mariette, B. Katz: SoundDelta – Largescale, multi-user audio augmented reality, in Proceedings of the EAA Symposium on Auralization. 2009, pp. 37–42. [Google Scholar]
  12. E. Patricio, A. Ruminński, A. Kuklasiński, Ł. Januszkiewicz, T. Żernicki: Toward six degrees of freedom audio recording and playback using multiple ambisonics sound fields, in Audio Engineering Society Convention 146. 2019. [Google Scholar]
  13. G.D. Galdo, O. Thiergart, T. Weller, E. Habets: Generating virtual microphone signals using geometrical information gathered by distributed arrays, in IEEE Workshop on Hands-free Speech Communication and Microphone Arrays. 2011. [Google Scholar]
  14. O. Thiergart, G.D. Galdo, M. Taseska, E. Habets: Geometry-based spatial sound acquisition using distributed microphone arrays. IEEE Transactions on Audio, Speech, and Language Processing 21, 12 (2013) 2583–2594. [Google Scholar]
  15. J.G. Tylka, E.Y. Choueiri: Soundfield navigation using an array of higher-order ambisonics microphones, in Audio Engineering Society Conference: 2016 AES International Conference on Audio for Virtual and Augmented Reality. 2016. [Google Scholar]
  16. J.G. Tylka, E.Y. Choueiri: Domains of practical applicability for parametric interpolation methods of virtual sound field navigation. Journal of the Audio Engineering Society 67, 11 (2019) 882–893. [CrossRef] [Google Scholar]
  17. J.G. Tylka: Virtual Navigation of Ambisonics-Encoded Sound Fields Containing Near-Field Sources. Ph.D. thesis, Princeton University, 2019. [Google Scholar]
  18. P. Grosche, F. Zotter, C. Schörkhuber, M. Frank, R. Höldrich: Method and Apparatus for Acoustic Scene Playback. WO Patent, WIPO/PCT, European Patent Office, Rijswijk, 2018. WO 2018/077379 A1. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018077379&tab=PCTBIBLIO. [Google Scholar]
  19. T. Deppisch, A. Sontacchi: Browser application for virtual audio walkthrough, in Forum Media Technology & All Around Audio. 2017. [Google Scholar]
  20. D. Rudrich, M. Frank, F. Zotter: Evaluation of interactive localization in virtual acoustic scenes, in Fortschritte der Akustik – DAGA. 2017. [Google Scholar]
  21. D.R. Méndez, C. Armstrong, J. Stubbs, M. Stiles, G. Kearney: Practical recording techniques for music production with six-degrees of freedom virtual reality, in Audio Engineering Society Convention 145. 2018. [Google Scholar]
  22. A. Neidhardt, N. Knoop: Binaural walk-through scenarios with actual self-walking using an HTC Vive, in Fortschritte der Akustik – DAGA. 2017, pp. 283–286. [Google Scholar]
  23. S. Werner, F. Klein, G. Götz: Investigation on spatial auditory perception using non-uniformspatial distribution of binaural room impulse responses, in Proceedings of the ICSA. 2019. [Google Scholar]
  24. G. Kearney, C. Masterson, S. Adams, F. Boland: Towards efficient binaural room impulse response synthesis, in EAA Symposium on Auralization, Finland. 2009, pp. 106–111. [Google Scholar]
  25. C. Masterson, G. Kearney, F. Boland: Acoustic impulse response interpolation for multichannel systems using dynamic time warping, in Audio Engineering Society Conference: 35th International Conference: Audio for Games. 2009. [Google Scholar]
  26. V. Garcia-Gomez, J.J. Lopez: Binaural room impulse responses interpolation for multimedia real-time applications, in Audio Engineering Society Convention 144. 2018. [Google Scholar]
  27. A. Neidhardt: Data set: BRIRs for position-dynamic binaural synthesis measured in two rooms, in Proceedings of the ICSA. 2019. [Google Scholar]
  28. B. Bacila, H. Lee: 360 degree binaural room impulse response (BRIR) database for 6dof spatial perception research, in Audio Engineering Society Convention 146. 2019. [Google Scholar]
  29. E. Stein, M.M. Goodwin: Ambisonics depth extensions for six degrees of freedom, in Audio Engineering Society Conference: 2019 AES International Conference on Headphone Technology. 2019. [Google Scholar]
  30. J. Merimaa, V. Pulkki: Spatial impulse response rendering, in Proceedings of the 7th International Conference on Digital Audio Effects. 2004, pp. 139–144. [Google Scholar]
  31. S. Tervo, J. Pätynen, A. Kuusinen, T. Lokki: Spatial decomposition method for room impulse responses. Journal of the Audio Engineering Society 61, 1 (2013) 17–28. [Google Scholar]
  32. M. Zaunschirm, M. Frank, F. Zotter: BRIR synthesis using first-order microphone arrays, in Audio Engineering Society Convention 144. 2018. [Google Scholar]
  33. L. McCormack, A. Politis, O. Scheuregger, V. Pulkki: Higher-order processing of spatial impulse responses, in Proceedings of the 23rd International Congress on Acoustics. 2019, pp. 9–13. [Google Scholar]
  34. R. Stewart, M. Sandler: Database of omnidirectional and B-format room impulse responses, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2010, pp. 165–168. [Google Scholar]
  35. A. Southern, J. Wells, D. Murphy: Rendering walk-through auralisations using wave-based acoustical models, in 17th European Signal Processing Conference. 2009, pp. 715–719. [Google Scholar]
  36. V. Garca Gómez: Interpolation Techniques in Advanced Spatial Audio Systems. Master’s thesis, Universitat Politècnica de València, 2018. [Google Scholar]
  37. J. Ivanic, K. Ruedenberg: Rotation matrices for real spherical harmonics. Direct determination by recursion. The Journal of Physical Chemistry 100, 15 (1996) 6342–6347. [Google Scholar]
  38. F. Zotter, M. Frank: Ambisonics. SpringerOpen, 2019. [CrossRef] [Google Scholar]
  39. L. McCormack, V. Pulkki, A. Politis, O. Scheuregger, M. Marschall: Higher-order spatial impulse response rendering: Investigating the perceived effects of spherical order, dedicated diffuse rendering, and frequency resolution. Journal of the Audio Engineering Society 68, 5 (2020) 338–354. [CrossRef] [Google Scholar]
  40. M. Zaunschirm, F. Zotter, M. Frank: Binaural rendering with measured room responses: First-order ambisonic microphone vs. dummy head. MDPI Applied Sciences 10, 5 (2020). [Google Scholar]
  41. P. Götz, K. Kowalczyk, A. Silzle, E. Habets: Mixing time prediction using spherical microphone arrays. The Journal of the Acoustical Society of America 137, 2 (2015) EL206–EL212. [CrossRef] [PubMed] [Google Scholar]
  42. A. Lindau, L. Kosanke, S. Weinzierl: Perceptual evaluation of model- and signal-based predictors of the mixing time in binaural room impulse responses. Journal of the Audio Engineering Society 60, 11 (2012) 887–898. [Google Scholar]
  43. C. Schörkhuber, P. Hack, F. Zotter, M. Zaunschirm, A. Sontacchi: Localization of multiple acoustic sources with a distributed array of unsynchronized first-order ambisonics microphones, in Proceedings of the 6th Congress of the Alps Adria Acoustic Association. 2014. [Google Scholar]
  44. J. Neering: Optimization and Estimation Techniques for Passive Acoustic Source Localization. Theses, École Nationale Supérieure des Mines de Paris, 2009. [Google Scholar]
  45. H. Schau, A. Robinson: Passive source localization employing intersecting spherical surfaces from time-of-arrival differences. IEEE Transactions on Acoustics, Speech, and Signal Processing 35, 8 (1987) 1223–1225. [Google Scholar]
  46. Y. Huang, J. Benesty, G.W. Elko, R.M. Mersereau: Real-time passive source localization: A practical linear-correction least-squares approach. IEEE Transactions on Speech and Audio Processing 9 (2001) 943–956. [CrossRef] [Google Scholar]
  47. A. Wabnitz, N. Epain, C. Jin, A. van Schaik: Room acoustics simulation for multichannel microphone arrays, in Proceedings of the International Symposium on Room Acoustics. 2010. [Google Scholar]
  48. C. Schörkhuber, M. Zaunschirm, R. Höldrich: Binaural rendering of ambisonic signals via magnitude least squares, in Fortschritte der Akustik – DAGA. 2018, pp. 339–342. [Google Scholar]
  49. M. Zaunschirm, C. Schörkhuber, R. Höldrich: Binaural rendering of ambisonic signals by head-related impulse response time alignment and a diffuseness constraint. The Journal of the Acoustical Society of America 143, 6 (2018) 3616–3627. [CrossRef] [PubMed] [Google Scholar]
  50. ITU: ITU-R BS. 1534-3: Method for the Subjective Assessment of Intermediate Quality Level of Audio Systems. 2015. [Google Scholar]
  51. F. Zotter, K. Müller: Method for Position-dependent Interpolation and Extrapolation of Ambisonic Room Impulse Responses. Provisional Patent Appl., Austrian Patent Office, Vienna, 2020. A 60169/2020. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.