Open Access
Audio Article
Issue
Acta Acust.
Volume 5, 2021
Article Number 21
Number of page(s) 10
Section Building Acoustics
DOI https://doi.org/10.1051/aacus/2021007
Published online 07 May 2021
  1. D.B. Huron: Sweet anticipation: Music and the psychology of expectation. MIT press, London, UK, 2006. [Google Scholar]
  2. S. Koelsch: Brain correlates of music-evoked emotions. Nature Reviews Neuroscience 15 (2014) 170–180. [Google Scholar]
  3. E. Bigand, R. Parncutt, F. Lerdahl: Perception of musical tension in short chord sequences: The influence of harmonic function, sensory dissonance, horizontal motion, and musical training. Perception & Psychophysics 58 (1996) 125–141. [Google Scholar]
  4. E. Bigand, R. Parncutt: Perceiving musical tension in long chord sequences. Psychological Research 62 (1999) 237–254. [Google Scholar]
  5. F. Lerdahl, C.L. Krumhansl: Modeling tonal tension. Music Perception 24 (2007) 329–366. [Google Scholar]
  6. M.M. Farbood: A parametric, temporal model of musical tension. Music Perception 29 (2012) 387–428. [Google Scholar]
  7. M.M. Farbood, F. Upham: Interpreting expressive performance through listener judgments of musical tension. Frontiers in Psychology 4 (2013) 998. [Google Scholar]
  8. S. Paraskeva, S. McAdams: Influence of timbre, presence/absence of tonal hierarchy and musical training on the perception of musical tension and relaxation schemas. Aristotle University of Thessaloniki, Greece, 1997, pp. 438–441. [Google Scholar]
  9. D. Pressnitzer, S. McAdams, S. Winsberg, J. Fineberg: Perception of musical tension for nontonal orchestral timbres and its relation to psychoacoustic roughness. Perception & Psychophysics 62 (2000) 66–80. [Google Scholar]
  10. J.C. Hailstone, R. Omar, S.M. Henley, C. Frost, M.G. Kenward, J.D. Warren: It’s not what you play, it’s how you play it: Timbre affects perception of emotion in music. The Quarterly Journal of Experimental Psychology 62 (2009) 2141–2155. [Google Scholar]
  11. I. Lahdelma, T. Eerola: Single chords convey distinct emotional qualities to both naive and expert listeners. Psychology of Music 44 (2016) 37–54. [Google Scholar]
  12. M.M. Farbood, K.C. Price: The contribution of timbre attributes to musical tension. The Journal of the Acoustical Society of America 141 (2017) 419–427. [Google Scholar]
  13. A. Zacharakis, K. Pastiadis, J.D. Reiss: An interlanguage study of musical timbre semantic dimensions and their acoustic correlates. Music Perception 31 (2014) 339–358. [Google Scholar]
  14. A. Zacharakis, M.J. Terrell, A.J. Simpson, K. Pastiadis, J.D. Reiss: Rearrangement of timbre space due to background noise: Behavioural evidence and acoustic correlates. Acta Acustica united with Acustica 103 (2017) 288–298. [Google Scholar]
  15. C.K. Madsen, W.E. Fredrickson: The experience of musical tension: A replication of nielsen’s research using the continuous response digital interface. Journal of Music Therapy 30 (1993) 46–63. [Google Scholar]
  16. C.L. Krumhansl: A perceptual analysis of Mozart’s piano sonata k. 282: Segmentation, tension, and musical ideas. Music Perception 13 (1996) 401–432. [Google Scholar]
  17. M. Lehne, M. Rohrmeier, D. Gollmann, S. Koelsch: The influence of different structural features on felt musical tension in two piano pieces by Mozart and Mendelssohn. Music Perception 31 (2013) 171–185. [Google Scholar]
  18. M. Lehne, M. Rohrmeier, S. Koelsch: Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music. Social cognitive and affective neuroscience 9 (2013) 1515–1523. [Google Scholar]
  19. M. Goodchild, B. Gingras, S. McAdams: Analysis, performance, and tension perception of an unmeasured prelude for harpsichord. Music Perception 34 (2016) 1–20. [Google Scholar]
  20. B. Gingras, M.T. Pearce, M. Goodchild, R.T. Dean, G. Wiggins, S. McAdams: Linking melodic expectation to expressive performance timing and perceived musical tension. Journal of Experimental Psychology: Human Perception and Performance 42 (2016) 594. [Google Scholar]
  21. H. Fletcher: Normal vibration frequencies of a stiff piano string. The Journal of the Acoustical Society of America 36 (1964) 203–209. [Google Scholar]
  22. F. Upham, S. McAdams: Activity analysis and coordination in continuous responses to music. Music Perception 35 (2018) 253–294. [Google Scholar]
  23. F. Bailes, R.T. Dean: Comparative time series analysis of perceptual responses to electroacoustic music. Music Perception 29 (2012) 359–375. [Google Scholar]
  24. D. McFadden: Quantitative methods for analyzing travel behaviour of individuals: some recent developments. University of California Berkeley, CA, Institute of Transportation Studies, 1977. [Google Scholar]
  25. J.G. Neuhoff: An adaptive bias in the perception of looming auditory motion. Ecological Psychology 13 (2001) 87–110. [Google Scholar]
  26. B.C.J. Moore, R.W. Peters, B.R. Glasberg: Thresholds for the detection of inharmonicity in complex tones. The Journal of the Acoustical Society of America 77 (1985) 1861–1867. [Google Scholar]
  27. E. Schubert: Modeling perceived emotion with continuous musical features. Music Perception 21 (2004) 561–585. [Google Scholar]
  28. A. Zacharakis, K. Pastiadis: Revisiting the luminance-texture-mass model for musical timbre semantics: A confirmatory approach and perspectives of extension. Journal of the Audio Engineering Society 64 (2016) 636–645. [Google Scholar]
  29. Interaction between time-varying tone inharmonicity, fundamental frequency and spectral shape affects felt tension and timbral semantics. [Online] Available at: https://doi.org/10.5281/zenodo.4626964 [Accessed: Mar 22 2021]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.