Open Access
Issue
Acta Acust.
Volume 5, 2021
Article Number 20
Number of page(s) 16
Section Virtual Acoustics
DOI https://doi.org/10.1051/aacus/2021012
Published online 30 April 2021
  1. T. Pihlajamäki, V. Pulkki: Projecting simulated or recorded spatial sound onto 3d-surfaces, in AES Conference: 45th International Conference: Applications of Time-Frequency Processing in Audio, 03 2012. Available: http://www.aes.org/e-lib/browse.cfm?elib=16198. [Google Scholar]
  2. T. Pihlajamäki, V. Pulkki: Synthesis of complex sound scenes with transformation of recorded spatial sound in virtual reality. Journal of the Audio Engineering Society 63 (2015) 542–551. Available: http://www.aes.org/e-lib/browse.cfm?elib=17840. [Google Scholar]
  3. V. Pulkki: Directional audio coding in spatial sound reproduction and stereo upmixing, in AES Conference: 28th International Conference: The Future of Audio Technology – Surround and Beyond, 06, 2006. Available: http://www.aes.org/e-lib/browse.cfm?elib=13847. [Google Scholar]
  4. V. Pulkki, A. Politis, M.-V. Laitinen, J. Vilkamo, J. Ahonen: First-order directional audio coding (dirac). Parametric Time-Frequency Domain Spatial Audio 10 (2017) 89–140. https://doi.org/10.1002/9781119252634.ch5. [Google Scholar]
  5. A. Plinge, S.J. Schlecht, O. Thiergart, T. Robotham, O. Rummukainen, E.A.P. Habets: Six-degrees-of-freedom binaural audio reproduction of first-order ambisonics with distance information, in: AES International Conference on Audio for Virtual and Augmented Reality 08 2018). Available: http://www.aes.org/e-lib/browse.cfm?elib=19684. [Google Scholar]
  6. N. Barrett, S. Berge: A new method for b-format to binaural transcoding, in Audio Engineering Society Conference: 40th International Conference: Spatial Audio: Sense the Sound of Space, 10, 2010. Available: http://www.aes.org/e-lib/browse.cfm?elib=15527. [Google Scholar]
  7. E. Stein, M.M. Goodwin: Ambisonics depth extensions for six degrees of freedom, in AES Conference: 2019 AES International Conference on Headphone Technology, 08 2019, Available: http://www.aes.org/e-lib/browse.cfm?elib=20514. [Google Scholar]
  8. A. Allen, B. Kleijn: Ambisonic soundfield navigation using directional decomposition and path distance estimation, in ICSA, Graz, Austria, 09 2017. [Google Scholar]
  9. M. Kentgens, A. Behler, P. Jax: Translation of a higher order ambisonics sound scene based on parametric decomposition, in IEEE ICASSP (2020) 151–155. https://doi.org/10.1109/ICASSP40776.2020.9054414. [Google Scholar]
  10. L. Birnie, T. Abhayapala, P. Samarasinghe, V. Tourbabin: Sound field translation methods for binaural reproduction, in IEEE WASPAA (2019) 140–144. Available: https://doi.org/10.1109/WASPAA.2019.8937274. [Google Scholar]
  11. E. Bates, H. O’Dwyer, K.-P. Flachsbarth, F.M. Boland: A recording technique for 6 degrees of freedom VR, in AES Convention, Vol. 144. Audio Engineering Society, 05 2018. Available: http://www.aes.org/e-lib/browse.cfm?elib=19418 [Google Scholar]
  12. H. Lee: A new multichannel microphone technique for effective perspective control, in AES Convention, Vol. 140. Audio Engineering Society, 05 2011. Available: https://www.aes.org/e-lib/browse.cfm?elib=15804. [Google Scholar]
  13. A. Brutti, M. Omologo, P. Svaizer: Localization of multiple speakers based on a two step acoustic map analysis. IEEE ICASSP (2008) 4349–4352. Available: https://doi.org/10.1109/ICASSP.2008.4518618. [Google Scholar]
  14. A. Brutti, M. Omologo, P. Svaizer: Multiple source localization based on acoustic map de-emphasis. EURASIP Journal on Audio, Speech, and Music Processing 2010 (2010). 147495. https://doi.org/10.1155/2010/147495. [Google Scholar]
  15. P. Hack, Multiple source localization with distributed tetrahedral microphone arrays. Master’s Thesis, Institute of Electronic Music and Acoustics, University of Music and Performing Arts Graz, Graz, Austria, 2015. Available: http://phaidra.kug.ac.at/o:12797 [Google Scholar]
  16. G. Del Galdo, O. Thiergart, T. Weller, E.A. Habets: Generating virtual microphone signals using geometrical information gathered by distributed arrays, in 2011 Joint Workshop on Hands-free Speech Communication and Microphone Arrays, IEEE, 05 2011. Available: https://doi.org/10.1109. [Google Scholar]
  17. O. Thiergart, G. Del Galdo, M. Taseska, E.A.P. Habets: Geometry-based spatial sound acquisition using distributed microphone arrays. IEEE Transactions on Audio, Speech, and Language Processing 21 (2013) 2583–2594. https://doi.org/10.1109/TASL.2013.2280210. [Google Scholar]
  18. X. Zheng: Soundfield navigation: Separation, compressionand transmission. Ph.D. Dissertation, University of Wollongong, 2013. Available: https://ro.uow.edu.au/theses/3943/. [Google Scholar]
  19. D.B. Ward, E.A. Lehmann, R.C. Williamson: Particle filtering algorithms for tracking an acoustic source in a reverberant environment. IEEE Transactions on Speech and Audio Processing 11 (2003) 11 https://doi.org/10.1109/TSA.2003.818112. [Google Scholar]
  20. M.F. Fallon, S.J. Godsill: Acoustic source localization and tracking of a time-varying number of speakers. IEEE Transactions on Audio, Speech, and Language Processing 20 (2012) 1409–1415. https://doi.org/10.1109/TASL.2011.2178402. [Google Scholar]
  21. J.-M. Valin, F. Michaud, J. Rouat: Robust 3D localization and tracking of sound sources using beamforming and particle filtering. IEEE ICASSP (2006). https://doi.org/10.1109/ICASSP.2006.1661100. [Google Scholar]
  22. J.-M. Valin, F. Michaud, J. Rouat: Robust localization and tracking of simultaneous moving sound sources using beamforming and particle filtering. Elsevier Science 55 (2007) 216–228. Available: https://arxiv.org/pdf/1602.08139.pdf. [Google Scholar]
  23. S. Kitić, A. Guérin: Tramp: Tracking by a real-time ambisonic-based particle filter, in LOCATA Challenge Workshop, 09 2018. Available: https://arxiv.org/abs/1810.04080. [Google Scholar]
  24. J.G. Tylka, E. Choueiri. Soundfield navigation using an array of higher-order ambisonics microphones, in AES International Conference on Audio for Virtual and Augmented Reality, 09 (2016). Available: http://www.aes.org/e-lib/browse.cfm?elib=18502. [Google Scholar]
  25. J.G. Tylka, E.Y. Choueiri: Domains of practical applicability for parametric interpolation methods for virtual sound field navigation. Journal of the Audio Engineering Society 67 (2019) 882–893. Available: http://www.aes.org/e-lib/browse.cfm?elib=20702. [CrossRef] [Google Scholar]
  26. J.G. Tylka: Virtual navigation of ambisonics-encoded sound fields containing near-field sources. PhD dissertation, Princeton University, 2019. Available: http://arks.princeton.edu/ark:/88435/dsp011544br958. [Google Scholar]
  27. N. Mariette, B.F.G. Katz, K. Boussetta, O. Guillerminet: Sounddelta: A study of audio augmented reality using wifi-distributed ambisonic cell rendering. AES Convention, Vol. 128. Audio Engineering Society, 2010. Available: http://www.aes.org/e-lib/browse.cfm?elib=15420. [Google Scholar]
  28. C. Schörkhuber, R. Höldrich, F. Zotter: Triplet-based variable-perspective (6DoF) audio rendering from simultaneous surround recordings taken at multiple perspectives, in Fortschritte der Akustik (DAGA), Hannover, Germany, 04 2020. Available: https://pub.dega-akustik.de/DAGA_2020/data/articles/000295.pdf. [Google Scholar]
  29. E. Patricio, A. Rumiński, A. Kuklasiński, L. Januszkiewicz, T. Żernicki: Toward six degrees of freedom audio recording and playback using multiple ambisonics sound fields. AES Convention, Vol. 146, Audio Engineering Society, 2019. Available: http://www.aes.org/e-lib/browse.cfm?elib=20274. [Google Scholar]
  30. P. Grosche, F. Zotter, C. Schörkhuber, M. Frank, R. Höldrich: Method and apparatus for acoustic scene playback. Patent WO2018077379A1 (2018). Available: https://patents.google.com/patent/WO2018077379A1. [Google Scholar]
  31. F. Zotter, M. Frank, C. Schörkhuber, R. Höldrich: Signal-independent approach to variable-perspective (6DoF) audio rendering from simultaneous surround recordings taken at multiple perspectives, in Fortschritte der Akustik (DAGA), Hannover, Germany. 04 2020. Available: https://pub.dega-akustik.de/DAGA_2020/data/articles/000458.pdf. [Google Scholar]
  32. D. Rivas Méndez, C. Armstrong, J. Stubbs, M. Stiles, G. Kearney: Practical recording techniques for music production with six-degrees of freedom virtual reality. AES Convention, Vol. 145, Audio Engineering Society, 2015. Available: http://www.aes.org/e-lib/browse.cfm?elib=19729. [Google Scholar]
  33. F. Zotter, M. Frank: Ambisonics, 1st edn., Vol. 19 of Springer Topics in Signal Processing, Springer International Publishing, 2019. https://doi.org/10.1007/978-3-030-17207-7. [CrossRef] [Google Scholar]
  34. A. Politis: Microphone array processing for parametric spatial audio techniques. PhD dissertation, Aalto University, 2016. Available: http://urn.fi/URN:ISBN:978-952-60-7037-7. [Google Scholar]
  35. J. Ivanic, K. Ruedenberg: Rotation matrices for real spherical harmonics. direct determination by recursion. The Journal of Physical Chemistry 100 (1996) 6342–6347. https://doi.org/10.1021/jp953350u. [Google Scholar]
  36. C. Schörkhuber, M. Zaunschirm, R. Höldrich: Binaural rendering of ambisonic signals via magnitude least squares, in Fortschritte der der Akustik (DAGA), Munich, Germany, 03 2018. Available: https://pub.dega-akustik.de/DAGA_2018/data/articles/000301.pdf. [Google Scholar]
  37. Oktava GmbH: Oktava mk-4012 (2019). Available: http://www.oktava-shop.com/images/product_images/popup_images/4012.jpg. [Google Scholar]
  38. E. Hille: Analytic Function Theory, 2nd edn., Vol. 1. Chelsea Publishing Company, New York, 1982. [Google Scholar]
  39. A. Politis, S. Delikaris-Manias, V. Pulkki: Direction-of-arrival and diffuseness estimation above spatial aliasing for symmetrical directional microphone arrays. IEEE ICASSP (2015) 6–10. https://doi.org/10.1109/ICASSP.2015.7177921. [Google Scholar]
  40. T. Wilding: System parameter estimation of acoustic scenes using first order microphones, Master’s thesis. Institute of Electronic Music and Acoustics, University of Music and Performing Arts Graz, Graz, Austria, 2016. Available: http://phaidra.kug.ac.at/o:40685. [Google Scholar]
  41. Z. He, A. Cichocki, S. Xie, K. Choi: Detecting the number of clusters in n-way probabilistic clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 32 (2010) 2006–2021. https://doi.org/10.1109/TPAMI.2010.15. [CrossRef] [PubMed] [Google Scholar]
  42. M. Kronlachner: Spatial transformations for the alteration of ambisonic recordings. Master’s thesis (2014). Available: http://phaidra.kug.ac.at/o:8569. [Google Scholar]
  43. M. Hafsati, N. Epain, J. Daniel: Editing ambisonics sound scenes. ICSA, Graz, Austria, 09 2017. [Google Scholar]
  44. M. Jeffet, B. Rafaely: Study of a generalized spherical array beamformer with adjustable binaural reproduction (2014) 77–81. https://doi.org/10.1109/HSCMA.2014.6843255. [Google Scholar]
  45. N. Shabtai, B. Rafaely: Generalized spherical array beamforming for binaural speech reproduction. IEEE/ACM Transactions on Audio, Speech, and Language Processing 22 (2014) 238–247. https://doi.org/10.1109/TASLP.2013.2290499. [Google Scholar]
  46. M. Jeffet, N. Shabtai, B. Rafaely: Theory and perceptual evaluation of the binaural reproduction and beamforming tradeoff in the generalized spherical array beamformer. IEEE/ACM Transactions on Audio, Speech, and Language Processing 24 (2016) 708–718. https://doi.org/10.1109/TASLP.2016.2522649. [Google Scholar]
  47. M. Blochberger: Multi-perspective scene analysis from tetrahedral microphone recordings. Master’s thesis (2020). Available: https://phaidra.kug.ac.at/o:104549. [Google Scholar]
  48. B. Efron, R. Tibshirani: An Introduction to the Bootstrap, Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, 1994. Available: https://books.google.at/books?id=gLlpIUxRntoC. [Google Scholar]
  49. J.S. Liu, R. Chen: Blind deconvolution via sequential imputations. Journal of the American Statistical Association 90 (1995) 567–576. https://doi.org/10.1080/01621459.1995.10476549. [Google Scholar]
  50. P. Fearnhead: Sequential monte carlo methods in filter theory. PhD dissertation, University of Oxford, 1998. [Google Scholar]
  51. G. Kitagawa: Monte carlo filter and smoother for non-gaussian nonlinear state space models. Journal of Computational and Graphical Statistics 5 (1996) 1–25. https://doi.org/10.1080/10618600.1996.10474692. [Google Scholar]
  52. J. Liu, R. Chen: Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association 93 (1998) 1032–1044. https://doi.org/10.1080/01621459.1998.10473765. [Google Scholar]
  53. J. Carpenter, P. Clifford, P. Fearnhead: An improved particle filter for non-linear problems. IEE Proceedings Radar Sonar and Navigation 146 (1999) 2–7. https://doi.org/10.1049/ip-rsn:19990255. [Google Scholar]
  54. A. Doucet, N. de Freitas, N. Gordon: Sequential Monte Carlo Methods in Practice, 1st edn., Information Science and Statistics. Springer-Verlag, New York, 2001. https://doi.org/10.1007/978-1-4757-3437-9. [CrossRef] [Google Scholar]
  55. S. Särkkä: Bayesian Filtering and Smoothing, Institute of Mathematical Statistics Textbooks. Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139344203. [Google Scholar]
  56. D. Whitley: A genetic algorithm tutorial. Statistics and Computing 4 (1994) 65–85. https://doi.org/10.1007/BF00175354. [Google Scholar]
  57. A. Wabnitz, N. Epain, C. Jin, A. van Schaik: Room acoustics simulation for multichannel microphone arrays. ISRA, Melbourne, Australia, 08 2010. Available: https://www.acoustics.asn.au/conference_proceedings/ICA2010/cdrom-ISRA2010/Papers/P5d.pdf. [Google Scholar]
  58. EBU: Sound Quality Assessment Material recordings for subjective tests, 2008. Available: https://tech.ebu.ch/publications/sqamcd. [Google Scholar]
  59. ITU, ITU-R BS.1534-3: Method for the subjective assessment of intermediate quality level of audio systems, 2015. Available: https://www.itu.int/rec/R-REC-BS.1534-3-201510-I. [Google Scholar]
  60. D. Rudrich: IEM Plugin Suite. IEM, 2019. Available: https://plugins.iem.at/. [Google Scholar]
  61. D. Rudrich, F. Zotter, M. Frank: Evaluation of interactive localization in virtual acoustic scenes. Fortschritte der Akustik (DAGA), Kiel, Germany, 09 2017. Available: https://pub.dega-akustik.de/DAGA_2017/data/articles/000182.pdf. [Google Scholar]
  62. F. Wilcoxon: Individual comparisons by ranking methods. Biometrics Bulletin 1 (1945) 80–83. Available: http://www.jstor.org/stable/3001968. [Google Scholar]
  63. S. Holm: A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6 (1979) 65–70. Available: http://www.jstor.org/stable/4615733. [Google Scholar]
  64. D. Altman, D. Machin, T. Bryant, M. Gardner: Statistics with Confidence, Confidence Intervals and Statistical Guidelines, 2nd edn., BMJ Books (2000). [Google Scholar]
  65. M. Eid, M. Gollwitzer, M. Schmitt: Statistik und Forschungsmethoden, 5th edn. Julius Beltz, 2017. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.