Open Access
Technical & Applied Article
Issue
Acta Acust.
Volume 5, 2021
Article Number 22
Number of page(s) 13
Section Computational and Numerical Acoustics
DOI https://doi.org/10.1051/aacus/2021014
Published online 11 May 2021
  1. B. Arguillat, D. Ricot, G. Robert, C. Bailly: Measurements of the wavenumber-frequency spectrum of wall pressure fluctuations under turbulent flows, in 11th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics, May 2005. [Google Scholar]
  2. R. Siegert, V. Schwarz, J. Reichenberger: Numerical simulation of aeroacoustic sound generated by generic bodies placed on a plate: Part-II, prediction of radiated sound pressure, in Proceedings of the 5th AIAA/CEAS Aeroacoustics Conference, 1999. American Institute of Aeronautics and Astronautics, May, 1999. [Google Scholar]
  3. S. Becker, C. Hahn, M. Kaltenbacher, R. Lerch: Flow-induced sound of wall-mounted cylinders with different geometries. AIAA Journal 46 (2008) 2265–2281. [Google Scholar]
  4. J. Ask, L. Davidson: A numerical investigation of the flow past a generic side mirror and its impact on sound generation. Journal of Fluids Engineering 131 (2009) 061102. [Google Scholar]
  5. F. Schäfer, S. Müller, T. Uffinger, S. Becker, J. Grabinger, M. Kaltenbacher: Fluid-structure-acoustic interaction of the flow past a thin flexible structure. AIAA Journal 48 (2010) 738–748. [Google Scholar]
  6. S. Krajnovic, L. Davidson: Flow around a simplified car, part 1: Large eddy simulation. Journal of Fluids Engineering 127 (2005) 907–918. [Google Scholar]
  7. D. Aljure, I. Rodriguez, O. Lehmkhul, R. Borrell, A. Oliva: Flow and turbulent structures around simplified car models. Conference on Modelling Fluid Flow (2012) 247–254. [Google Scholar]
  8. M. Cabrol, Y. Detandt, M. Hartmann, A. Mutzke: A comparison between the effects of turbulent and acoustic wall pressure fluctuations inside a car, in 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). American Institute of Aeronautics and Astronautics, June 2012, pp. 2012–2202. [Google Scholar]
  9. F. Van Herpe, D. D’Udekem, J. Jacqmot, R. Kouzaiha: Vibro-acoustic simulation of side windows and windshield excited by realistic CFD turbulent flows including car cavity, in SAE Technical Paper Series. SAE International, June, 2012, pp. 01–1521. [Google Scholar]
  10. F.G. Mendonca, T. Connelly, S. Bonthu, P. Shorter: CAE-based prediction of aero-vibro-acoustic interior noise transmission for a simple test vehicle. Tech. Rep. (2014) 1–2. [Google Scholar]
  11. A. Schell, V. Cotoni: Prediction of interior noise in a sedan due to exterior flow. SAE International Journal of Passenger Cars – Mechanical Systems 8 (2015) 1090–1096. [Google Scholar]
  12. A. Schell, V. Cotoni: Flow induced interior noise prediction of a passenger car, in INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Vol. 254. Institute of Noise Control Engineering, 2017, pp. 1–10. [Google Scholar]
  13. S. Schoder, M. Kaltenbacher: Hybrid aeroacoustic computations: State of art and new achievements. Journal of Theoretical and Computational Acoustics 27, 4 (2019) 1950020. [Google Scholar]
  14. S. Müller, S. Becker, C. Gabriel, R. Lerch, F. Ullrich: Flow-induced input of sound to the interior of a simplified car model depending on various setup parameters, in 19th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics, May 2013. [Google Scholar]
  15. S. Müller: Fluid-Struktur-Akustik-Kopplung bei der Überströmung dünner Platten. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), April 2015. [Google Scholar]
  16. F. Durst, M. Schäfer: A parallel block-structured multigrid method for the prediction of incompressible flows. International Journal for Numerical Methods in Fluids 22 (1996) 549–565. [Google Scholar]
  17. M. Kaltenbacher: Advanced simulation tool for the design of sensors and actuators. Procedia Engineering 5 (2010) 597–600. [Google Scholar]
  18. S. Becker, K. Nusser, M. Oswald: Aero-vibro-acoustic wind noise-simulation based on the flow around a car, in SAE Technical Paper Series. SAE International, June 2016. [Google Scholar]
  19. K. Nusser, S. Müller, C. Scheit, M. Oswald, S. Becker: Large eddy simulation of the flow around a simplified car model, in Direct and Large-Eddy Simulation X. Springer International Publishing, 2017, pp. 243–249. [Google Scholar]
  20. A. Hüppe, J. Grabinger, M. Kaltenbacher, A. Reppenhagen, G. Dutzler, W. Kühnel: A non-conforming finite element method for computational aeroacoustics in rotating systems, in 20th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics, 2014, p. 2739. [Google Scholar]
  21. M. Kaltenbacher, A. Hüppe, A. Reppenhagen, F. Zenger, S. Becker: Computational aeroacoustics for rotating systems with application to an axial fan. AIAA Journal 55 (2017) 3831–3838. [Google Scholar]
  22. S. Schoder, C. Junger, M. Kaltenbacher: Computational aeroacoustics of the eaa benchmark case of an axial fan. Acta Acustica 4, 5 (2020) 22. [EDP Sciences] [Google Scholar]
  23. N. Lindener: Aerodynamic Testing of Road Vehicles in Open Jet Wind Tunnels, vol. SP-1465 of SP (Society of Automotive Engineers). Society of Automotive Engineers, Warrendale, PA, 1999. [Google Scholar]
  24. S. Müller, S. Becker, C. Gabriel, F. Ullrich: Influence of the flow-induced structure-borne noise on the interior acoustics of a simplified car model, in European Conference on Noise Control, Pragu, 2012, pp. 10–13. [Google Scholar]
  25. M. Islam, F. Decker, M. Hartmann, A. Jaeger, T. Lemke, J. Ocker, V. Schwarz, F. Ullrich, A. Schroeder, A. Heider: Investigations of sunroof buffeting in an idealised generic vehicle model – Part I: Experimental results, in 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), American Institute of Aeronautics and Astronautics, May 2008, p. 2900. [Google Scholar]
  26. M. Kaltenbacher, M. Escobar, S. Becker, I. Ali: Computational aeroacoustics based on lighthill’s acoustic analogy, in Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods. Springer, 2008, pp. 115–142. [Google Scholar]
  27. J.-P. Berenger: A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics 1142 (1994) 185–200. [Google Scholar]
  28. S. Marburg: Discretization Requirements: How many Elements per Wavelength are Necessary? Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 309–332. [Google Scholar]
  29. M.E. Delany, E.N. Bazley: Acoustical properties of fibrous absorbent materials. Applied Acoustics 3 (1970) 105–116. [Google Scholar]
  30. M. Aretz, Combined wave and ray based room acoustic simulations of small roomss, vol. 12 of Aachener Beiträge zur technischen Akustiks. Logos Verlag Berlin GmbH, 2012. [Google Scholar]
  31. C.F. Eyring: Reverberation time in “dead” rooms. The Journal of the Acoustical Society of America 1 (1930) 217–241. [Google Scholar]
  32. J. Hunt, A. Wray, P. Moin: Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, 1988, pp. 193–208. [Google Scholar]
  33. R.G. Dejong, T.S. Bharj, J.J. Lee: Vehicle wind noise analysis using a SEA model with measured source levels, in SAE Technical Paper Series. SAE International, April2001. [Google Scholar]
  34. P. Bremner, J. Wilby: Aero-vibro-acoustics: Problem statement and methods for simulation-based design solution, in 8th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics, June 2002. [Google Scholar]
  35. M. Hartmann, J. Ocker, T. Lemke, A. Mutzke, V. Schwarz, H. Tokuno, R. Toppinga, P. Unterlechner, G. Wickern: Wind noise caused by the side-mirror and a-pillar of a generic vehicle model, in 18th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics, June 2012. [Google Scholar]
  36. W.K. Blake: Mechanics of flow-induced sound and vibrations. Academic Press, 1986. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.