Open Access
Scientific Article
Issue
Acta Acust.
Volume 5, 2021
Article Number 10
Number of page(s) 21
Section Hearing, Audiology and Psychoacoustics
DOI https://doi.org/10.1051/aacus/2021001
Published online 17 February 2021
  1. P. Zahorik, D.S. Brungart, A.W. Bronkhorst: Auditory distance perception in humans: A summary of past and present research. Acta Acustica united with Acustica 91, 3 (2005) 409–420. [Google Scholar]
  2. A.J. Kolarik, B.C.J. Moore, P. Zahorik, S. Cirstea, Shahina Pardhan: Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Attention Perception & Psychophysics 78, 2 (2016) 373–395. [CrossRef] [Google Scholar]
  3. J. Blauert: Spatial Hearing – The Psychophysics of Human Sound Localization. MIT Press, Cambridge, MA, 1996. [CrossRef] [Google Scholar]
  4. D.S. Brungart, W.M. Rabinowitz: Auditory localization of nearby sources. Head-related transfer functions. Journal of the Acoustical Society of America 106, 3 (1999) 1465–1479. [CrossRef] [Google Scholar]
  5. R.O. Duda, W.L. Martens: Range dependence of the response of a spherical head model. Journal of the Acoustical Society of America 104, 5 (1998) 3048–3058. [CrossRef] [Google Scholar]
  6. J.M. Arend, A. Neidhardt, C. Pörschmann: Measurement and perceptual evaluation of a spherical near-field HRTF Set, in Proceedings of the 29th Tonmeistertagung – VDT International Convention, 2016, pp. 356–363. [Google Scholar]
  7. D.S. Brungart, N.I. Durlach, W.M. Rabinowitz: Auditory localization of nearby sources. II. Localization of a broadband source. Journal of the Acoustical Society of America 106, 4 (1999) 1956–1968. [CrossRef] [Google Scholar]
  8. S. Spagnol, E. Tavazzi, F. Avanzini: Distance rendering and perception of nearby virtual sound sources with a near-field filter model. Applied Acoustics 115 (2017) 61–73. [CrossRef] [Google Scholar]
  9. R.E. Holt, W.R. Thurlow: Subject orientation and judgment of distance of a sound source. Journal of the Acoustical Society of America 46, 6B (1969) 1584. [CrossRef] [Google Scholar]
  10. M.B. Gardner: Distance estimation of 0° or apparent 0°-oriented speech signals in anechoic space. Journal of the Acoustical Society of America 45, 1 (1969) 47–53. [CrossRef] [Google Scholar]
  11. D.S. Brungart: Auditory localization of nearby sources. III. Stimulus effects. Journal of the Acoustical Society of America 106, 6 (1999) 3589–3602. [CrossRef] [Google Scholar]
  12. D.S. Brungart, B.D. Simpson: Auditory localization of nearby sources in a virtual audio display, in: Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, 2001, pp. 107–110. [Google Scholar]
  13. A. Kan, C. Jin, A. Schaik: A psychophysical evaluation of near-field head-related transfer functions synthesized using a distance variation function. Journal of the Acoustical Society of America 125, 4 (2009) 2233–2242. [CrossRef] [Google Scholar]
  14. W.E. Simpson, L.D. Stanton: Head movement does not facilitate perception of the distance of a source of sound. Journal of the Acoustical Society of America 86, 1 (1973) 151–159. [Google Scholar]
  15. L.D. Rosenblum, A. Paige Wuestefeld, K.L. Anderson: Auditory reachability: an affordance approach to the perception of sound source distance. Ecological Psychology 8, 1 (1996) 1–24. [CrossRef] [Google Scholar]
  16. B.G. Shinn-Cunningham, S. Santarelli, N. Kopčo: Distance perception of nearby sources in reverberant and anechoic listening conditions: Binaural vs. Monaural Cues, in Poster presented at the 23rd MidWinter meeting of the Association for Research in Otolaryngology, St. Petersburg, Florida, 2000. [Google Scholar]
  17. B.G. Shinn-Cunningham: Distance cues for virtual auditory space, in Proceedings of the First IEEE Pacific-Rim Conference on Multimedia, Sydney, Australia, 2000, pp. 227–230. [Google Scholar]
  18. B.G. Shinn-Cunningham: Localizing sound in rooms, in Proceedings of the ACM SIGGRAPH and EUROGRAPHICS Campfire: Acoustic Rendering for Virtual Environments, Snowbird, Utah, 2001, pp. 17–22. [Google Scholar]
  19. N. Kopčo, B.G. Shinn-Cunningham: Effect of stimulus spectrum on distance perception for nearby sources. Journal of the Acoustical Society of America 130, 3 (2011) 1530–1541. [CrossRef] [Google Scholar]
  20. N. Kopčo, S. Huang, J.W. Belliveau, T. Raij, C. Tengshe, J. Ahveninen: Neuronal representations of distance in human auditory cortex. Proceedings of the National Academy of Sciences 109, 27 (2012) 11019–11024. [Google Scholar]
  21. D.H. Ashmead, D. Leroy, R.D. Odom: Perception of the relative distances of nearby sound sources. Perception & Psychophysics 47, 4 (1990) 326–331. [CrossRef] [PubMed] [Google Scholar]
  22. G.A. Miller: Sensitivity to changes in the intensity of white noise and its relation to masking and loudness. Journal of the Acoustical Society of America 19, 4 (1947) 609–619. [CrossRef] [Google Scholar]
  23. L. Prud’homme, M. Lavandier: Do we need two ears to perceive the distance of a virtual frontal sound source? Journal of the Acoustical Society of America 148, 3 (2020) 1614–1623. [CrossRef] [Google Scholar]
  24. ITU-R BS.1770-4: Algorithms to measure audio programme loudness and true-peak audio level. International Telecommunications Union, Geneva, 2015. [Google Scholar]
  25. T. Djelani, C. Pörschmann, J. Sahrhage, J. Blauert: An interactive virtual-environment generator for psychoacoustic research II: Collection of head-related impulse responses and evaluation of auditory localization. Acta Acustica united with Acustica 86, 6 (2000) 1046–1053. [Google Scholar]
  26. E.M. Wenzel, M. Arruda, D.J. Kistler, F.L. Wightman: Localization using nonindividualized head-related transfer functions. Journal of the Acoustical Society of America 94, 1 (1993) 111–123. [CrossRef] [PubMed] [Google Scholar]
  27. H. Møller, M.F. Sørensen, C.B. Jensen, D. Hammershøi: Binaural technique: do we need individual recordings? Journal of the Audio Engineering Society 44, 6 (1996) 451–469. [Google Scholar]
  28. D.R. Begault, E.M. Wenzel, M.R. Anderson: Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source. Journal of the Audio Engineering Society 49, 10 (2001) 904–916. [Google Scholar]
  29. P. Zahorik: Distance localization using nonindividualized head-related transfer functions. Journal of the Acoustical Society of America 108 (2000) 2597. [CrossRef] [Google Scholar]
  30. P. Zahorik: Auditory display of sound source distance, in Proceedings of the International Conference on Auditory Displays, 2002, pp. 1–7. [Google Scholar]
  31. V. Best, R. Baumgartner, M. Lavandier, P. Majdak, N. Kop: Sound externalization: A review of recent research. Trends in Hearing 24 (2020) 1–14. [Google Scholar]
  32. G. Yu, L. Wang: Effect of individualized head-related transfer functions on distance perception in virtual reproduction for a nearby source, in Proceedings of the AES International Conference on Spatial Reproduction – Aesthetics and Science, 2018, pp. 1–5. [Google Scholar]
  33. G. Yu, L. Wang: Effect of individualized head-related transfer functions on distance perception in virtual reproduction for a nearby sound source. Archives of Acoustics 44, 2 (2019) 251–258. [Google Scholar]
  34. W.M. Hartmann, A. Wittenberg: On the externalization of sound images. Journal of the Acoustical Society of America 99, 6 (1996) 3678–3688. [CrossRef] [Google Scholar]
  35. W. Owenbrimijoin, A.W. Boyd, M.A. Akeroyd: The contribution of head movement to the externalization and internalization of sounds. PLoS One 8, 12 (2013) 1–12. [CrossRef] [PubMed] [Google Scholar]
  36. R. Baumgartner, D.K. Reed, B. Tóth, V. Best, P. Majdak, H. Steven Colburn, B. Shinn-Cunningham: Asymmetries in behavioral and neural responses to spectral cues demonstrate the generality of auditory looming bias. Proceedings of the National Academy of Sciences of the United States of America 114, 36 (2017) 9743–9748. [Google Scholar]
  37. A.V. Giner: Scale – conducting psychoacoustic experiments with dynamic binaural synthesis, in Proceedings of the 41st DAGA, 2015, pp. 1128–1130. [Google Scholar]
  38. M. Geier, J. Ahrens, S. Spors: The soundscape renderer: A unified spatial audio reproduction framework for arbitrary rendering methods, in Proceedings of the 124th AES Convention, Amsterdam, The Netherlands, 2008, pp. 1–6. [Google Scholar]
  39. C. Pörschmann, J.M. Arend, A. Neidhardt, A spherical near-field HRTF Set for auralization and psychoacoustic research, Proceedings of the 142nd AES Convention, Berlin, Germany, 2017, pp. 1–5. [Google Scholar]
  40. EBU R128: Loudness normalisation and permitted maximum level of audio signals. EBU – European Broadcasting Union, Geneva, 2014. [Google Scholar]
  41. B. Bernschütz: Microphone arrays and sound field decomposition for dynamic binaural recording, Doctoral dissertation, TU Berlin, 2016. [Google Scholar]
  42. C. Pörschmann, C. Störig: Investigations into the velocity and distance perception of moving sound sources. Acta Acustica united with Acustica 95. 4 (2009) 696–706. [CrossRef] [Google Scholar]
  43. A. Lindau, V. Erbes, S. Lepa, H.-J. Maempel, F. Brinkman, S. Weinzierl, A spatial audio quality inventory (SAQI), Acta Acustica united with Acustica 100, 5 (2014) 984–994. [CrossRef] [Google Scholar]
  44. Y. Hochberg: A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75, 4 (1988) 800–802. [Google Scholar]
  45. G.V. Glass, P.D. Peckham, J.R. Sanders: Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. Review of Educational Research 42, 3 (1972) 237–288. [Google Scholar]
  46. S.W. Greenhouse, S. Geisser: On methods in the analysis of profile data. Psychometrika 24, 2 (1959) 885–891. [Google Scholar]
  47. E.-J. Wagenmakers: A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review 5 (2007) 779–804. [Google Scholar]
  48. J.N. Rouder, P.L. Speckman, D. Sun, R.D. Morey, G. Iverson: Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review 16, 2 (2009) 225–237. [CrossRef] [PubMed] [Google Scholar]
  49. J.N. Rouder, R.D. Morey, P.L. Speckman, J.M. Province, Default Bayes factors for ANOVA designs, Journal of Mathematical Psychology 56, 5 (2012) 356–374. [Google Scholar]
  50. G.R. Loftus, M.E.J. Masson: Using confidence intervals in within-subject designs, Psychonomic Bulletin & Review 1, 4 (1994) 476–490. [CrossRef] [PubMed] [Google Scholar]
  51. J. Jarmasz, J.G. Hollands: Confidence intervals in Repeated-Measures Designs: The number of observations principle. Canadian Journal of Experimental Psychology 63, 2 (2009) 124–138. [CrossRef] [Google Scholar]
  52. R.R. Sokal, F. James Rohlf: Introduction to Biostatistics, 2nd ed. Dover Publications Inc, Mineola, NY, 2009. [Google Scholar]
  53. R.A. Butler, E.T. Levy, W.D. Neff: Apparent distance of sounds recorded in echoic and anechoic chambers. Journal of Experimental Psychology: Human Perception and Performance 6, 4 (1980) 745–750. [CrossRef] [Google Scholar]
  54. A.D. Little, D.H. Mershon, P.H. Cox: Spectral content as a cue to perceived auditory distance. Perception 21, 3 (1992) 405–416. [CrossRef] [PubMed] [Google Scholar]
  55. P.D. Coleman: Dual role of frequency spectrum in determination of auditory distance. Journal of the Acoustical Society of America 44, 2 (1968) 631–632. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.