Open Access
Scientific Article
Issue
Acta Acust.
Volume 5, 2021
Article Number 9
Number of page(s) 8
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2021002
Published online 12 February 2021
  1. N. Fletcher, T. Rossing: Physics of musical instruments. 2nd ed., Springer, 1998. [Google Scholar]
  2. A. Chaigne: The making of pianos: a historical view. Musique et Techniques 8 (2017), Itemm. [Google Scholar]
  3. H. Fletcher, E.D. Blackham, R. Stratton: Quality of piano tones. The Journal of the Acoustical Society of America 34 (1962) 749–761. [Google Scholar]
  4. N. Giordano: Explaining the railsback stretch in terms of the inharmonicity of piano tones and sensory dissonance. The Journal of the Acoustical Society of America 138 (2015) 2359–2366. [PubMed] [Google Scholar]
  5. F. Rigaud, B. David, L. Daudet: A parametric model and estimation techniques for the inharmonicity and tuning of the piano. The Journal of the Acoustical Society of America 133 (2013) 3107–3118. [PubMed] [Google Scholar]
  6. H.A. Conklin: Design and tone in the mechanoacoustic piano. part III. piano strings and scale design. The Journal of the Acoustical Society of America 100 (1996) 1286–1298. [Google Scholar]
  7. B.E. Anderson, W.J. Strong: The effect of inharmonic partials on pitch of piano tones. The Journal of the Acoustical Society of America 117 (2005) 3268–3272. [PubMed] [Google Scholar]
  8. F. Miller: A proposed loading of piano strings for improved tone. The Journal of the Acoustical Society of America 21 (1949) 318–322. [Google Scholar]
  9. A.E. Sanderson: Method for making wound strings for musical instruments characterized by reduced inharmonicity. US Patent 5984226 (1999). [Google Scholar]
  10. J.A. Kemp: On inharmonicity in bass guitar strings with application to tapered and lumped constructions. SN Applied Sciences 2 (2020) 636. [Google Scholar]
  11. J.P. Dalmont, S. Maugeais: Piano strings with reduced inharmonicity. Acta Acustica United With Acustica, Hirzel Verlag 105 (2019) 714–726. [Google Scholar]
  12. E. Ducasse: On waveguide modeling of stiff piano strings. The Journal of the Acoustical Society of America 118 (2005) 1776–1781. [CrossRef] [PubMed] [Google Scholar]
  13. J. Chabassier: Modeling and numerical simulation of a piano (in French). PhD thesis, Ecole Polytechnique, 2012. [Google Scholar]
  14. R.A. Rasch, V. Heetvelt: String inharmonicity and piano tuning. Music Perception: An Interdisciplinary Journal 3, 2 (1985) 171–189. [Google Scholar]
  15. P. Chumnantas: Inharmonicity in the natural mode frequencies of overwound strings. PhD Dissertation, The University of Edinburgh, 1995. [Google Scholar]
  16. A. Galembo, A. Askenfelt, L.L. Cuddy, F.A. Russo: Perceptual relevance of inharmonicity and spectral envelope in the piano bass range. Acta Acustica United With Acustica, Hirzel Verlag 90 (2004) 528–536. [Google Scholar]
  17. L. Brillouin, M. Parodi: Wave Propagation in Periodic Structures. Mc Graw Hill, New York, NY, USA, 1946. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.