Open Access
Scientific Article
Issue
Acta Acust.
Volume 5, 2021
Article Number 39
Number of page(s) 12
Section Computational and Numerical Acoustics
DOI https://doi.org/10.1051/aacus/2021030
Published online 01 September 2021
  1. S.M. Kuo, D.R. Morgan: Active noise control: A tutorial review. Proceedings of the IEEE 87, 6 (1999) 943–973. [CrossRef] [Google Scholar]
  2. D. Eggler, H. Chung, F. Montiel, J. Pan, N. Kessissoglou: Active noise cloaking of 2d cylindrical shells. Wave Motion 87 (2019) 106–122. [CrossRef] [Google Scholar]
  3. J. Pan, R. Paurobally, X. Qiu: Active noise control in workplaces. Acoustics Australia 44, 1 (2016) 45–50. [CrossRef] [Google Scholar]
  4. S. Wang, H. Sun, J. Pan, X. Qiu: Near-field error sensing for active directivity control of radiated sound. The Journal of the Acoustical Society of America 144, 2 (2018) 598–607. [CrossRef] [PubMed] [Google Scholar]
  5. T. Betlehem, P.D. Teal: A constrained optimization approach for multi-zone surround sound, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2011, pp. 437–440. [Google Scholar]
  6. L.-J. Brännmark, A. Bahne, A. Ahlen: Compensation of loudspeaker–room responses in a robust mimo control framework. IEEE Transactions on Audio, Speech, and Language Processing 21, 6 (2013) 1201–1216. [CrossRef] [Google Scholar]
  7. J. Cheer, S.J. Elliott, M.F. Simón Gálvez: Design and implementation of a car cabin personal audio system. Journal of the Audio Engineering Society 61, 6 (2013) 412–424. [Google Scholar]
  8. D. Eggler, M. Karimi, N. Kessissoglou: Active acoustic cloaking in a convected flow field. The Journal of the Acoustical Society of America 146, 1 (2019) 586–594. [CrossRef] [PubMed] [Google Scholar]
  9. F.G. Vasquez, G.W. Milton, D. Onofrei: Active exterior cloaking for the 2d laplace and helmholtz equations. Physical Review Letters 103, 7 (2009) 073901. [CrossRef] [PubMed] [Google Scholar]
  10. F.G. Vasquez, G.W. Milton, D. Onofrei: Exterior cloaking with active sources in two dimensional acoustics. Wave Motion 48 (2011) 515–524. [CrossRef] [Google Scholar]
  11. S.J. Elliott, J. Cheer: Modeling local active sound control with remote sensors in spatially random pressure fields. The Journal of the Acoustical Society of America 137, 4 (2015) 1936–1946. [CrossRef] [PubMed] [Google Scholar]
  12. W. Jung, S.J. Elliott, J. Cheer: Combining the remote microphone technique with head-tracking for local active sound control. The Journal of the Acoustical Society of America 142, 1 (2017) 298–307. [CrossRef] [PubMed] [Google Scholar]
  13. H. Chen, C.T. Chan: Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters 91, 18 (2007), 183518. [CrossRef] [Google Scholar]
  14. S.A. Cummer, J. Christensen, A. Alù: Controlling sound with acoustic metamaterials. Nature Reviews Materials 1, 3 (2016) 16001. [CrossRef] [Google Scholar]
  15. R.V. Kohn, J. Lu, B. Schweizer, M.I. Weinstein: A variational perspective on cloaking by anomalous localized resonance. 2012. arXiv:1210.4823 [math.AP]. [Google Scholar]
  16. N.J.A. Egarguin, D. Onofrei, E. Platt: Sensitivity analysis for the active manipulation of helmholtz fields in 3d. Inverse Problems in Science and Engineering 28, 3 (2020) 314–339. [CrossRef] [Google Scholar]
  17. N.J.A. Egarguin, S. Zeng, D. Onofrei, J. Chen: Active control of helmholtz fields in 3d using an array of sources. Wave Motion 94, 102523 (2020) 1–27. [Google Scholar]
  18. C. House, J. Cheer, S. Daley: On the use of virtual sensing for the real-time detection and active control of a scattered acoustic field, in International Congress of Sound and Vibration. 2019. [Google Scholar]
  19. P.A. Nelson, S.J. Elliott: Active Control of Sound. Academic London, 1992. [Google Scholar]
  20. D. Onofrei: Active manipulation of fields modeled by the helmholtz equation. Journal Of Integral Equations and Applications 26, 4 (2014) 553–579. [CrossRef] [Google Scholar]
  21. D. Onofrei, E. Platt: On the synthesis of acoustic sources with controllable near fields. Wave Motion 77 (2018) 12–27. [CrossRef] [Google Scholar]
  22. J.L. Buchanan, R.P. Gilbert, A. Wirgin, Y.S. Xu: Marine Acoustics: Direct and Inverse Problems. SIAM, 2004. [CrossRef] [Google Scholar]
  23. F.B. Jensen, W.A. Kuperman, M.B. Porter, H. Schmidt: Computational Ocean Acoustics. Springer, 2011. [CrossRef] [Google Scholar]
  24. J.B. Keller, J.S. Papadakis: Wave propagation and underwater acoustics, in Number 70 in Lecture Notes in Physics, Springer-Verlag. 1977. [CrossRef] [Google Scholar]
  25. T. Betlehem, W. Zhang, M.A. Poletti, T.D. Abhayapala: Personal sound zones: Delivering interface-free audio to multiple listeners. IEEE Signal Processing Magazine 32, 2 (2015) 81–91. [CrossRef] [Google Scholar]
  26. J. Jiang, Y. Li: Review of active noise control techniques with emphasis on sound quality enhancement. Applied Acoustics 136 (2018) 139–148. [CrossRef] [Google Scholar]
  27. E. Dong, Y. Zhang, Z. Song, T. Zhang, C. Cai, N.X. Fang: Physical modeling and validation of porpoises’ directional emission via hybrid metamaterials. National Science Review 6, 5 (2019) 921–928. [CrossRef] [Google Scholar]
  28. Y. Zhang, Z. Song, X. Wang, W. Cao, W.W.L. Au: Directional acoustic wave manipulation by a porpoise via multiphase forehead structure. Physical Review Applied 8, 6 (2017) 064002. [CrossRef] [Google Scholar]
  29. E. Fisher, B. Rafaely: Near-field spherical microphone array processing with radial filtering. IEEE Transactions on Audio, Speech, and Language Processing 19, 2 (2010) 256–265. [CrossRef] [Google Scholar]
  30. M. Poletti, T. Betlehem: Design of a prototype variable directivity loudspeaker for improved surround sound reproduction in rooms, in Audio Engineering Society Conference: 52nd International Conference: Sound Field Control-Engineering and Perception, Audio Engineering Society. 2013. [Google Scholar]
  31. B. Rafaely, D. Khaykin: Optimal model-based beamforming and independent steering for spherical loudspeaker arrays. IEEE Transactions on Audio, Speech, and Language Processing 19, 7 (2011) 2234–2238. [CrossRef] [Google Scholar]
  32. J.R. Buck, J.C. Preisig, M. Johnson, J. Catipovic: Single-mode excitation in the shallow-water acoustic channel using feedback control. IEEE Journal of Oceanic Engineering 22, 2 (1997) 281–291. [CrossRef] [Google Scholar]
  33. D. Peng, T. Gao, J. Zeng: Study on single-mode excitation in time-variant shallow water environment. Journal of Computational Acoustics 22, 01 (2014) 1440001. [CrossRef] [Google Scholar]
  34. N.C. Makris, P. Ratilal: A unified model for reverberation and submerged object scattering in a stratified ocean waveguide. The Journal of the Acoustical Society of America 109, 3 (2001) 909–941. [CrossRef] [PubMed] [Google Scholar]
  35. N.J.A. Egarguin, D. Onofrei, C. Qi, J. Chen: Active manipulation of helmholtz scalar fields: Near field synthesis with directional far field control. Inverse Problems 36, 9 (2020) 095005. [CrossRef] [Google Scholar]
  36. R.F. Harrington: Field computation by moment methods. Wiley-IEEE Press, 1993. [CrossRef] [Google Scholar]
  37. J. Ahrens: The single-layer potential approach applied to sound field synthesis including cases of non-enclosing distributions of secondary sources. 2010. [Google Scholar]
  38. D. Colton, R. Kress: Inverse Acoustic and Electromagnetic Scattering Theory. 3rd ed., Springer-Verlag, 2013, pp. 83–94. [Google Scholar]
  39. T. Bonesky: Morozov’s discrepancy principle and tikhonov-type functionals. Inverse Problems 25, 1 (2008) 015015. [CrossRef] [Google Scholar]
  40. D. Colton, R. Kress: Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag, 3rd ed, 2013. [CrossRef] [Google Scholar]
  41. C. Qi, N.J.A. Egarguin, D. Onofrei, J. Chen: Supplementary material. https://drive.google.com/file/d/1E1ApCAUwBokeGuqiumu1GKzUIKR3u3N1/view?usp=sharing, 2021. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.