Open Access
Acta Acust.
Volume 5, 2021
Article Number 38
Number of page(s) 7
Section Ultrasonics
Published online 31 August 2021
  1. R.S. Edwards, S. Dixon, X. Jian: Characterisation of defects in the railhead using ultrasonic surface waves. NDT & E International 39 (2006) 468–475. [CrossRef] [Google Scholar]
  2. K.A. Tiwari, R. Raisutis, V. Samaitis: Hybrid signal processing technique to improve the defect estimation in ultrasonic non-destructive testing of composite structures. Sensors 17 (2017) 2858–2878. [CrossRef] [Google Scholar]
  3. D.A. Cook, Y.H. Berthelot: Detection of small surface-breaking fatigue cracks in steel using scattering of Rayleigh waves. NDT & E International 34 (2001) 483–492. [CrossRef] [Google Scholar]
  4. M. Duqennoy, M. Ouaftouh, M. Ourak: Determination of stresses in aluminium alloy using optical detection of Rayleigh waves. Ultrasonics 37 (1999) 365–372. [CrossRef] [PubMed] [Google Scholar]
  5. C.B. Thring, Y. Fan, R.S. Edwards: Focused Rayleigh wave EMAT for characterisation of surface-breaking defects. NDT & E International 81 (2016) 20–27. [CrossRef] [Google Scholar]
  6. Y. Shi, Z. Shen, X. Ni, L. Jian, J. Guan: Ultrasonic phased array with surface acoustic wave for imaging cracks. AIP Advances 7 (2017) 065214. [CrossRef] [Google Scholar]
  7. C. Hoyle, M. Sutcliffe, P. Charlton, S. Mosey: Large-area surface imaging methods using ultrasonic Rayleigh waves, phased array and full matrix capture for non-destructive testing. Insight – Non-Destructive Testing and Condition Monitoring 61 (2019) 367–379. [CrossRef] [Google Scholar]
  8. M. Ducousso, F. Reverdy: Real-time imaging of microcracks on metallic surface using total focusing method and plane wave imaging with Rayleigh waves. NDT & E International 116 (2020) 102311. [CrossRef] [Google Scholar]
  9. A. Ouchi, Y. Ohara, K. Yamanaka: Subharmonic phased array for crack evaluation using surface acoustic wave. Japanese Journal of Applied Physics 54 (2015) 07HC05. [CrossRef] [Google Scholar]
  10. M.H. Nadal, C. Hubert, A.R. Oltra: High temperature shear modulus determination using a laser-ultrasonic surface acoustic-wave device. Journal of Applied Physics 106 (2009) 024906. [CrossRef] [Google Scholar]
  11. J. Simpson, K.V. Wijk, L. Adam, C. Smith: Laser ultrasonic measurements to estimate the elastic properties of rock samples under in situ conditions. Review of Scientific Instruments 90 (2019) 114503. [CrossRef] [Google Scholar]
  12. C. Pei, D. Yi, T. Liu, X. Kou, Z. Chen: Fully noncontact measurement of inner cracks in thick specimen with fiber-phased-array laser ultrasonic technique, NDT & E International 113 (2020) 102273. [CrossRef] [Google Scholar]
  13. J. Chen, J. Xiao, D. Lisevych, Z. Fan: Laser-Induced Full-Matrix Ultrasonic Imaging of Complex-Shaped Objects, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 66 (2019) 1514–1520. [CrossRef] [Google Scholar]
  14. T. Stratoudaki, M. Clark, P.D. Wilcox: Laser induced ultrasonic phased array using full matrix capture data acquisition and total focusing method. Optics Express 24 (2016) 21921–21938. [CrossRef] [PubMed] [Google Scholar]
  15. C. Fan, M. Caleap, M. Pan, B.W. Drinkwater: A comparison between ultrasonic array beamforming and super resolution imaging algorithms for non-destructive evaluation, Ultrasonics 54 (2014) 1842–1850. [CrossRef] [PubMed] [Google Scholar]
  16. T.E. Blum, K.V. Wijk, B. Pouet, A. Wartelle: Multicomponent wavefield characterization with a novel scanning laser interferometer. The Review of scientific instruments 81 (2010) 073101. [CrossRef] [PubMed] [Google Scholar]
  17. S. Choi, H. Seo, K.Y. Jhang: Noncontact evaluation of acoustic nonlinearity of a laser-generated surface wave in a plastically deformed aluminum alloy. Research in Nondestructive Evaluation 26 (2015) 13–22. [CrossRef] [Google Scholar]
  18. C. Edwards, T. Stratoudaki, S. Dixon: Laser generated Rayleigh and lamb waves. American Institute of Physics AIP 284 (2002) 284–291. [Google Scholar]
  19. R. Tao, W.B. Wang, J.T. Luo: Thin film flexible/bendable acoustic wave devices: Evolution, hybridization and decoupling of multiple acoustic wave modes. Surface and Coatings Technology 357 (2018) 73901. [Google Scholar]
  20. N. Laroche, S. Bourguignon, E. Carcreff, J. Idier, A. Duclos: An inverse approach for ultrasonic imaging from full matrix capture data. Application to resolution enhancement in NDT. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 62 (2020) 1877–1887. [CrossRef] [Google Scholar]
  21. Z. Zhou, K. Zhang, J. Zhou, G. Sun, J. Wang: Application of laser ultrasonic technique for non-contact detection of structural surface-breaking cracks. Optics & Laser Technology 73 (2015) 173–178. [CrossRef] [Google Scholar]
  22. J. Yang, N. DeRidder, C. Ume, J. Jarzynski: Non-contact optical fibre phased array generation of ultrasound for non-destructive evaluation of materials and processes. Ultrasonics 31 (1993) 387–394. [CrossRef] [Google Scholar]
  23. A.J.A. Bruinsma, J.A. Vogel: Ultrasonic noncontact inspection system with optical fiber methods. Applied Optics 27 (1988) 4690–4695. [CrossRef] [PubMed] [Google Scholar]
  24. S.C. Wooh, Y. Shi: Optimum beam steering of linear phased arrays. Wave Motion 29 (1999) 245–265. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.