Issue
Acta Acust.
Volume 5, 2021
Topical Issue - Auditory models: from binaural processing to multimodal cognition
Article Number 51
Number of page(s) 12
DOI https://doi.org/10.1051/aacus/2021043
Published online 10 December 2021
  1. S. Hoth, I. Baljić: Current audiological diagnostics. GMS Current Topics in Otorhinolaryngology, Head and Neck Surgery 16 (2017) Doc09. [Google Scholar]
  2. R. Meddis: Auditory-nerve first-spike latency and auditory absolute threshold: A computer model. The Journal of the Acoustical Society of America 119, 1 (2006) 406–417. [Google Scholar]
  3. I.C. Bruce, Y. Erfani, M.S.A. Zilany: A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites. Hearing Research 360 (2018) 40–54. [Google Scholar]
  4. S. Verhulst, A. Altoè, V. Vasilkov: Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hearing Research 360 (2018) 55–75. [Google Scholar]
  5. S. Zenker, J. Rubin, G. Clermont: From inverse problems in mathematical physiology to quantitative differential diagnoses. PLoS Computational Biology 3, 11 (2007) e204. [Google Scholar]
  6. M.R. Panda, W. Lecluyse, C.M. Tan, T. Jürgens, R. Meddis: Hearing dummies: Individualized computer models of hearing impairment. International Journal of Audiology 53, 10 (2014) 699–709. [Google Scholar]
  7. X.D. Song, B.M. Wallace, J.R. Gardner, N.M. Ledbetter, K.Q. Weinberger, D.L. Barbour: Fast, continuous audiogram estimation using machine learning. Ear and Hearing 36, 6 (2015) e326. [Google Scholar]
  8. Y. Shen, A.J. Kern: An Analysis of Individual Differences in Recognizing Monosyllabic Words Under the Speech Intelligibility Index Framework. Trends in Hearing 22 (2018) 2331216518761773. [Google Scholar]
  9. H. Dai, C. Micheyl: Psychometric functions for pure-tone frequency discrimination. The Journal of the Acoustical Society of America 130, 1 (2011) 263–272. [Google Scholar]
  10. D.M. Green: A maximum-likelihood method for estimating thresholds in a yes–no task. The Journal of the Acoustical Society of America 93, 4 (1993) 2096–2105. [Google Scholar]
  11. M. Dietz, J. Encke, K. Bracklo, S.D. Ewert: Prediction of tone detection thresholds in interaurally delayed noise based on interaural phase difference fluctuations. arXiv preprint: arXiv:2107.00320 (2021). [Google Scholar]
  12. S.D. Ewert: AFC – A modular framework for running psychoacoustic experiments and computational perception models, in Proceedings of the International Conference on Acoustics AIA-DAGA, 2013. [Google Scholar]
  13. M. Dietz, J.H. Lestang, P. Majdak, R.M. Stern, T. Marquardt, S.D. Ewert, W.M. Hartmann, D.F.M. Goodman: A framework for testing and comparing binaural models. Hearing Research 360 (2018) 92–106. [Google Scholar]
  14. P.L. Søndergaard, P. Majdak: The auditory modeling toolbox, in The technology of binaural listening. Springer, Berlin, Heidelberg. 2013, pp. 33–56. [Google Scholar]
  15. S. Herrmann, M. Dietz: Matlab Code for Model-based selection of most informative diagnostic tests and test parameters [Online]. Avaible at: https://doi.org/10.5281/zenodo.5211870 [Accessed: Nov 24 2021] [Google Scholar]
  16. M. Dietz, S.D. Ewert, V. Hohmann, B. Kollmeier: Coding of temporally fluctuating interaural timing disparities in a binaural processing model based on phase differences. Brain Research 1220 (2008) 234–245. [Google Scholar]
  17. M. Dietz, S.D. Ewert, Volker Hohmann: Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Communication 53, 5 (2011) 592–605. [Google Scholar]
  18. V. Hohmann: Frequency analysis and synthesis using a Gammatone filterbank. Acta Acustica United with Acustica 88, 3 (2002) 433–442. [Google Scholar]
  19. B.R. Glasberg, B.C.J. Moore: Auditory filter shapes in subjects with unilateral and bilateral cochlear impairments. The Journal of the Acoustical Society of America 79, 4 (1986) 1020–1033. [Google Scholar]
  20. J. Breebaart, S. Van De Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. I. Model structure. The Journal of the Acoustical Society of America 110, 2 (2001) 1074–1088. [Google Scholar]
  21. L.R. Bernstein, C. Trahiotis: The normalized correlation: Accounting for binaural detection across center frequency. The Journal of the Acoustical Society of America 100, 6 (1996) 3774–3784. [Google Scholar]
  22. H. Levitt: Transformed up-down methods in psychoacoustics. The Journal of the Acoustical society of America 49, 2B (1971) 467–477. [Google Scholar]
  23. L.R. Bernstein, C. Trahiotis: Binaural detection as a joint function of masker bandwidth, masker interaural correlation, and interaural time delay: Empirical data and modeling. The Journal of the Acoustical Society of America 148, 6 (2020) 3481–3488. [Google Scholar]
  24. M.M. Taylor, C.D. Creelman: PEST: Efficient estimates on probability functions. The Journal of the Acoustical Society of America 41, 4A (1967) 782–787. [Google Scholar]
  25. M.R. Leek: Adaptive procedures in psychophysical research. Perception & Psychophysics 63, 8 (2001) 1279–1292. [Google Scholar]
  26. E.A. Lopez-Poveda, R. Meddis: A human nonlinear cochlear filterbank. The Journal of the Acoustical Society of America 110, 6 (2001) 3107–3118. [Google Scholar]
  27. B. Sackmann, E. Dalhoff, M. Lauxmann: Model-based hearing diagnostics based on wideband tympanometry measurements utilizing fuzzy arithmetic. Hearing Research 378 (2019) 126–138. [Google Scholar]
  28. M. Dietz, L. Wang, D. Greenberg, D. McAlpine: Sensitivity to interaural time differences conveyed in the stimulus envelope: Estimating inputs of binaural neurons through the temporal analysis of spike trains. Journal of the Association for Research in Otolaryngology 17, 4 (2016) 313–330. [Google Scholar]
  29. R. Plomp: Auditory handicap of hearing impairment and the limited benefit of hearing aids. The Journal of the Acoustical Society of America 63, 2 (1978) 533–549. [Google Scholar]
  30. R. Sanchez Lopez, F. Bianchi, M. Fereczkowski, S. Santurette, T. Dau: Data-driven approach for auditory profiling and characterization of individual hearing loss. Trends in Hearing 22 (2018) 2331216518807400. [Google Scholar]
  31. H.F. Schuknecht, K. Watanuki, T. Takahashi, A.A. Belal Jr, R.S. Kimura, D.D. Jones, C.Y. Ota: Atrophy of the stria vascularis, a common cause for hearing loss. The Laryngoscope 84, 10 (1974) 1777–1821. [Google Scholar]
  32. H.F. Schuknecht, M.R. Gacek: Cochlear pathology in presbycusis. Annals of Otology, Rhinology & Laryngology 102, 1_suppl (1993) 1–16. [Google Scholar]
  33. J.R. Dubno, M.A. Eckert, F.-S. Lee, L.J. Matthews, R.A. Schmied: Classifying human audiometric phenotypes of age-related hearing loss from animal models. Journal of the Association for Research in Otolaryngology 14, 5 (2013) 687–701. [Google Scholar]
  34. R. Sanchez-Lopez, M. Fereczkowski, T. Neher, S. Santurette, T. Dau: Robust data-driven auditory profiling towards precision audiology. Trends in Hearing 24 (2020) 2331216520973539. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.