Open Access
Issue |
Acta Acust.
Volume 5, 2021
|
|
---|---|---|
Article Number | 50 | |
Number of page(s) | 14 | |
Section | Audio Signal Processing and Transducers | |
DOI | https://doi.org/10.1051/aacus/2021044 | |
Published online | 19 November 2021 |
- International Organization for Standardization, ISO 362β3:2016: Measurement of noise emitted by accelerating road vehicles β Engineering method β Part 1: M and N categories. [Google Scholar]
- J.W. Verheij: Inverse and reciprocity methods for machinery noise source characterization and sound path quantification. Part 1: Sources. International Journal of Acoustics and Vibration 2, 1 (1997) 11β20. [Google Scholar]
- J.W. Verheij: Inverse and reciprocity methods for machinery noise source characterization and sound path quantification. Part 2: Transmission Paths. International Journal of Acoustics and Vibration 2, 3 (1997) 103β112. [Google Scholar]
- W. Kropp, F.X. Becot, S. Barrelet: On the sound radiation from tyres. Acta Acustica United with Acustica 86, 5 (2000) 769β779. [Google Scholar]
- Z.D. Zhang, N. Vlahopoulos, T. Allen, K.Y. Zhang: Development and validation of a computational process for pass-by noise simulation. International Journal of Vehicle Design 34, 1 (2004) 12β34. [CrossRef] [Google Scholar]
- J. Huijssen, R. Hallez, B. Pluymers, W. Desmet: An approach for pass-by noise of automotive vehicles employing numerically evaluated source-receiver transfer functions. Journal of Sound and Vibration 332 (2013) 3079β3802. [Google Scholar]
- F. Pignol, E. Tijs, D.F. Comesana: Measurement of sound pressure contributions in pass-by-noise tests using particle velocity sensors. Acta Acustica United with Acustica 102, 1 (2016) 183β189. [CrossRef] [Google Scholar]
- A.R. Fleszar, P.J.G. van der Linden, J.R. Johnson, M.J. Grimmer: Combining vehicle and test-bed diagnosis information to guide vehicle development for pass-by noise. SAE Technical Papers 2001β01-1565, 2001. [Google Scholar]
- K. Genuit, S. Guidati, R. Sottek: Progresses in pass-by simulation techniques. SAE Technical Papers 2005β01-2262, 2005. [Google Scholar]
- B.K. Kim, S.W. Yoo, H.J. Kim, K. Zwanzig: Prediction of vehicle pass-by noise using indoor measurements. SAE Technical Papers 2001β01-1563, 2001. [Google Scholar]
- J. Putner, M. Lohrmann, H. Fastl: Contribution analysis of vehicle exterior noise with operational transfer path analysis, in Proceedings of ICA 2013, Montreal, Canada, 2013. [Google Scholar]
- Z. Chu, H. Wang, C. Chen, H. Yan, R. Kang: Source path contribution analysis for vehicle indoor pass-by noise. SAE Technical Paper 2017-01-2247, 2017. [Google Scholar]
- K. Janssens, P. Aarnoutse, P. Gajdatsy, L. Britte, F. Deblauwe, H. Van der Auwerauer: Time-domain source contribution analysis method for in-room pass-by noise. SAE Technical Paper 2011-01-1609, 2011. [Google Scholar]
- Y. Ryu, A. Schuhmacher, M. Hirayama, Y. Shirahashi: Contribution analysis of exterior noise with indoor pass-by measurement. SAE Technical Papers 2011-26-0062, 2011. [Google Scholar]
- A. Schuhmacher, Y. Shirahashi, M. Hirayama, M.Y. Ryu: Indoor pass-by noise contribution analysis using source path contribution concept, in Proceedings of ISMA2012-USD2012, Leuven, Belgium, 2012. [Google Scholar]
- D. Berckmans, P. Kindt, P. Sas, W. Desmet: Evaluation of substitution monopole models for tire noise sound synthesis. Mechanical Systems and Signal Processing 24 (2010) 240β255. [CrossRef] [Google Scholar]
- A. Schuhmacher, J. Hald, K.B. Rasmussen, P.C. Hansen: Sound source reconstruction using inverse boundary element calculations. The Journal of the Acoustical Society of America 113 (2003) 114. [CrossRef] [PubMed] [Google Scholar]
- W. Kropp, K. Larsson, F. Wullens, P. Homstad, F.X. Becot: The generation of the tyre/road noise, in Proceedings of ICSV 2003, Stockholm, Sweden, 2003. [Google Scholar]
- F. Wullens, W. Kropp: A three-dimensional contact model for tyre/road interaction in rolling conditions. Acta Acustica United with Acustica 904 (2004) 702β711. [Google Scholar]
- A. Papaioannou, S. Elliott, J. Cheer: Application of l2-norm regularisation techniques in the synthesis of indoor tyre pass-by noise with the inverse method. Journal of Sound and Vibration 473 (2020) 115240. [CrossRef] [Google Scholar]
- D. Malioutov, M. Cetin, A.C. Smith: A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing 53 (2005) 3010β3022. [CrossRef] [Google Scholar]
- G.F. Edelmann, C.F. Gaumond: Beamforming using compressive sensing. The Journal of the Acoustical Society of America 130 (2011) EL232βEL237. [CrossRef] [PubMed] [Google Scholar]
- P. Simard, J. Antoni: Acoustic source identification: Experimenting the l1 minimization approach. Applied Acoustics 74 (2013) 974β986. [CrossRef] [Google Scholar]
- G. Chardon, L. Daudet, A. Peillot, F. Ollivier, N. Bertin, R. Gribonval: Near-field acoustic holography using sparse regularisation and compressive sampling principles. The Journal of the Acoustical Society of America 132, 3 (2012) 1521β1534. [CrossRef] [PubMed] [Google Scholar]
- J. Hald: A comparison of iterative sparse equivalent source methods for near-field acoustic holography. The Journal of the Acoustical Society of America 143, 6 (2018) 3758β3769. [CrossRef] [PubMed] [Google Scholar]
- E. Fernandez-Grande, A. Xenaki, P. Gerstoft: A sparse equivalent source method for near-field acoustic holography. The Journal of the Acoustical Society of America 1411 (2017) 532β542. [CrossRef] [PubMed] [Google Scholar]
- A. Xenaki, E. Fernandez-Grande, P. Gerstoft: Block-sparse beamforming for spatially extended sources in a Bayesian formulation. The Journal of the Acoustical Society of America 140 (2016) 1828. [CrossRef] [PubMed] [Google Scholar]
- E. Fernandez-Grande, L. Daudet, Compressive acoustic holography with block-sparse regularization, The Journal of the Acoustical Society of America 143 (2018) 3737. [CrossRef] [PubMed] [Google Scholar]
- P. Gerstoft, A. Xenaki, C.F. Mecklenbrauker: Multiple and single snapshot compressive beamforming. The Journal of the Acoustical Society of America 138 (2015) 2003. [CrossRef] [PubMed] [Google Scholar]
- E. van den Berg, M.P. Friedlander: Theoretical and empirical results for recovery from multiple measurements. SIAM Journal of Scientific Computing 21, 4 (2011) 1201β1229. [Google Scholar]
- J. Tropp: Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Processing 86 (2006) 589β602. [CrossRef] [Google Scholar]
- J. Chen, X. Huo: Theoretical results on sparse representations of multiple measurement vectors. IEEE Transactions on Signal Processing 54, 12 (2006) 4634β4643. [CrossRef] [Google Scholar]
- P.A. Nelson, S.H. Yoon: Estimation of acoustic source strength by inverse methods: Part I: Conditioning of the inverse problem. Journal of Sound and Vibration 233, 4 (2000) 643β668. [Google Scholar]
- K.R. Holland, P.A. Nelson: The application of inverse methods to spatially-distributed acoustic sources. Journal of Sound and Vibration 332 (2013) 5727β5747. [CrossRef] [Google Scholar]
- K. Shin, J. Hammond: Fundamentals of Signal Processing for Sound and Vibration Engineers. Wiley Press, Chichester, UK, 2008. [Google Scholar]
- E. van den Berg, M.P. Friedlander: Sparse optimisation with least-squares constraints. SIAM Journal of Scientific Computing 21, 4 (2011) 1201β1229. [Google Scholar]
- E. van den Berg, M.P. Friedlander: SPGL1: A solver for large-scale sparse reconstruction, 2008. http://www.cs.ubc.ca/labs/scl/spgl1. [Google Scholar]
- E. van den Berg, M.P. Friedlander: Theoretical and empirical results for recovery from multiple measurements. IEEE Transactions on Information Theory 56, 5 (2010) 2516β2527. [CrossRef] [Google Scholar]
- LMS International: Mid high frequency volume velocity source (Q-MHF): LMS Qsources excitation hardware. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.