Issue
Acta Acust.
Volume 5, 2021
Topical Issue - Auditory models: from binaural processing to multimodal cognition
Article Number 45
Number of page(s) 16
DOI https://doi.org/10.1051/aacus/2021039
Published online 20 October 2021
  1. P. Avan, F. Giraudet, B. Büki: Importance of binaural hearing. Audiology and Neurotology 20, Suppl. 1 (2015) 3–6. [Google Scholar]
  2. J. Blauert, J. Braasch, eds.: The technology of binaural understanding, Modern acoustics and signal processing. Springer International Publishing, 2020. https://www.springer.com/gp/book/9783030003852. [Google Scholar]
  3. J. Blauert: Spatial hearing: The psychophysics of human sound localization. MIT Press, 1997. [Google Scholar]
  4. J. Tobias: Foundations of modern auditory theory. Elsevier, 2012. [Google Scholar]
  5. F.L. Wightman, D.J. Kistler: Monaural sound localization revisited. The Journal of the Acoustical Society of America 101, 2 (1997) 1050–1063. [Google Scholar]
  6. S. Perrett, W. Noble: The contribution of head motion cues to localization of low-pass noise. Perception & Psychophysics 59, 7 (1997) 1018–1026. [Google Scholar]
  7. C. Kim, R. Mason, T. Brookes: Head movements made by listeners in experimental and real-life listening activities. Journal of the Audio Engineering Society 61 (2013) 425–438. [Google Scholar]
  8. E.A. Macpherson: A computer model of binaural localization for stereo imaging measurement. Journal of the Audio Engineering Society 39, 9 (1991) 604–622. [Google Scholar]
  9. V. Willert, J. Eggert, J. Adamy, R. Stahl, E. Korner: A probabilistic model for binaural sound localization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 36, 5 (2006) 982–994. [Google Scholar]
  10. R. Baumgartner, P. Majdak, B. Laback: Modeling sound-source localization in sagittal planes for human listeners. The Journal of the Acoustical Society of America 136, 2 (2014) 791–802. [Google Scholar]
  11. J. Reijniers, D. Vanderelst, C. Jin, S. Carlile, H. Peremans: An ideal-observer model of human sound localization. Biological Cybernetics 108, 2 (2014) 169–181. [Google Scholar]
  12. J. Braasch: Localization in the presence of a distracter and reverberation in the frontal horizontal plane: II. Model algorithms. Acta Acustica United with Acustica 88, 6 (2002) 956–969. [Google Scholar]
  13. T. May, S. Van De Par, A. Kohlrausch: A probabilistic model for robust localization based on a binaural auditory front-end”. IEEE Transactions on Audio, Speech, and Language Processing 19, 1 (2010) 1–13. [Google Scholar]
  14. N. Ma, T. May, G.J. Brown: Exploiting deep neural networks and head movements for robust binaural localization of multiple sources in reverberant environments. IEEE/ACM Transactions on Audio, Speech, and Language Processing 25, 12 (2017) 2444–2453. [Google Scholar]
  15. A. Kothig, M. Ilievski, L. Grasse, F. Rea, M. Tata: A bayesian system for noise-robust binaural sound localisation for humanoid robots, in 2019 IEEE International Symposium on Robotic and Sensors Environments (ROSE), IEEE. 2019, pp. 1–7. [Google Scholar]
  16. D. Alais, D. Burr: The ventriloquist effect results from near-optimal bimodal integration. Current Biology 14, 3 (2004) 257–262. [Google Scholar]
  17. P.W. Battaglia, R.A. Jacobs, R.N. Aslin: Bayesian integration of visual and auditory signals for spatial localization. The Journal of the Optical Society of America A 20, 7 (2003) 1391–1397. [Google Scholar]
  18. M.O. Ernst, M.S. Banks: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 6870 (2002) 429–433. [Google Scholar]
  19. D.C. Knill, A. Pouget: The bayesian brain: The role of uncertainty in neural coding and computation. TRENDS in Neurosciences 27, 12 (2004) 712–719. [Google Scholar]
  20. L. Shams, W.J. Ma, U. Beierholm: Sound-induced flash illusion as an optimal percept. Neuroreport 16, 17 (2005) 1923–1927. [Google Scholar]
  21. R.A. Jacobs: Optimal integration of texture and motion cues to depth. Vision Research 39, 21 (1999) 3621–3629. [Google Scholar]
  22. H.H. Bülthoff, H.A. Mallot: Integration of stereo, shading and texture, in 11th European Conference on Visual Perception (ECVP 1988), Wiley. 1990, pp. 119–146. [Google Scholar]
  23. M.S. Landy, L.T. Maloney, E.B. Johnston, M. Young: Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Research 35, 3 (1995) 389–412. [Google Scholar]
  24. W. Cox, B.J. Fischer: Optimal prediction of moving sound source direction in the owl. PLoS Computational Biology 11, 7 (2015) e1004360. [Google Scholar]
  25. B. Zonooz, E. Arani, A.J. Van Opstal: Learning to localise weakly-informative sound spectra with and without feedback. Scientific Reports 8, 1 (2018) 1–14. [Google Scholar]
  26. P. Majdak, M.J. Goupell, B. Laback: 3-d localization of virtual sound sources: Effects of visual environment, pointing method, and training. Attention, Perception, & Psychophysics 72, 2 (2010) 454–469. [Google Scholar]
  27. R. Barumerli, P. Majdak, J. Reijniers, R. Baumgartner, M. Geronazzo, F. Avanzini: Predicting directional sound-localization of human listeners in both horizontal and vertical dimensions, in Audio Engineering Society Convention 148, Audio Engineering Society. 2020. [Google Scholar]
  28. E.A. Shaw: Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. The Journal of the Acoustical Society of America 56, 6 (1974) 1848–1861. [Google Scholar]
  29. L. Rayleigh: Xii. on our perception of sound direction. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 13, 74 (1907) 214–232. [Google Scholar]
  30. E.A. Macpherson, J.C. Middlebrooks: Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited. The Journal of the Acoustical Society of America 111, 5 (2002) 2219–2236. [Google Scholar]
  31. J.C. Middlebrooks: Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. The Journal of the Acoustical Society of America 106, 3 (1999) 1493–1510. [Google Scholar]
  32. M. Morimoto, H. Aokata: Localization cues of sound sources in the upper hemisphere. Journal of the Acoustical Society of Japan (E) 5, 3 (1984) 165–173. [Google Scholar]
  33. R.B. King, S.R. Oldfield: The impact of signal bandwidth on auditory localization: Implications for the design of three-dimensional audio displays. Human Factors 39, 2 (1997) 287–295. [Google Scholar]
  34. B. Zonooz, E. Arani, K.P. Körding, P.R. Aalbers, T. Celikel, A.J. Van Opstal: Spectral weighting underlies perceived sound elevation. Scientific Reports 9, 1 (2019) 1–12. [Google Scholar]
  35. J. Hebrank, D. Wright: Spectral cues used in the localization of sound sources on the median plane. The Journal of the Acoustical Society of America 56, 6 (1974) 1829–1834. [Google Scholar]
  36. J. Jiang, B. Xie, H. Mai, L. Liu, K. Yi, C. Zhang: The role of dynamic cue in auditory vertical localisation. Applied Acoustics 146 (2019) 398–408. [Google Scholar]
  37. E.M. Wenzel, M. Arruda, D.J. Kistler, F.L. Wightman: Localization using nonindividualized head-related transfer functions. The Journal of the Acoustical Society of America 94, 1 (1993) 111–123. [Google Scholar]
  38. K.I. McAnally, R.L. Martin: Sound localization with head movement: Implications for 3-d audio displays. Frontiers in Neuroscience 8 (2014) 210. [Google Scholar]
  39. P. Zahorik, D.S. Brungart, A.W. Bronkhorst: Auditory distance perception in humans: A summary of past and present research. ACTA Acustica United with Acustica 91, 3 (2005) 409–420. [Google Scholar]
  40. B.G. Shinn-Cunningham, S. Santarelli, N. Kopco: Tori of confusion: Binaural localization cues for sources within reach of a listener. The Journal of the Acoustical Society of America 107, 3 (2000) 1627–1636. [Google Scholar]
  41. D. Genzel, M. Schutte, W.O. Brimijoin, P.R. MacNeilage, L. Wiegrebe: Psychophysical evidence for auditory motion parallax. Proceedings of the National Academy of Sciences 115, 16 (2018) 4264–4269. [Google Scholar]
  42. R. Ege, A.J. Van Opstal, M.M. Van Wanrooij: Accuracy-precision trade-off in human sound localisation. Scientific Reports 8, 1 (2018) 1–12. [Google Scholar]
  43. B.J. Fischer, J.L. Peña: Owl’s behavior and neural representation predicted by bayesian inference. Nature Neuroscience 14, 8 (2011) 1061–1066. [Google Scholar]
  44. C.V. Parise, K. Knorre, M.O. Ernst: Natural auditory scene statistics shapes human spatial hearing. Proceedings of the National Academy of Sciences 111, 16 (2014) 6104–6108. [Google Scholar]
  45. R. Ege, A.J. Van Opstal, M.M. Van Wanrooij: A.W. Mills: On the minimum audible angle. The Journal of the Acoustical Society of America 30, 4 (1958) 237-246; S.R. Oldfield, S.P. Parker: Acuity of sound localisation: a topography of auditory space. i. normal hearing conditions. Perception 13, 5 (1984) 581-600. Eneuro 6, 2 (2019). [Google Scholar]
  46. U. Beierholm, S. Quartz, L. Shams: Bayesian priors are encoded independently from likelihoods in human multisensory perception. Journal of Vision 9 (2009) 23. [Google Scholar]
  47. Y. Weiss, E.P. Simoncelli, E.H. Adelson: Motion illusions as optimal percepts. Nature Neuroscience 5, 6 (2002) 598–604. [Google Scholar]
  48. I. Senna, C.V. Parise, M.O. Ernst: Hearing in slow-motion: Humans underestimate the speed of moving sounds. Scientific Reports 5, 1 (2015) 1–5. [Google Scholar]
  49. T.C. Freeman, J.F. Culling, M.A. Akeroyd, W.O. Brimijoin: Auditory compensation for head rotation is incomplete. Journal of Experimental Psychology: Human Perception and Performance 43, 2 (2017) 371. [Google Scholar]
  50. S. Carlile, J. Leung: The perception of auditory motion. Trends in Hearing 20 (2016) 2331216516644254. [Google Scholar]
  51. M. Barnett-Cowan, L.R. Harris: Temporal processing of active and passive head movement. Experimental Brain Research 214, 1 (2011) 27–35. [Google Scholar]
  52. M. Cooke, Y.-C. Lu, Y. Lu, R. Horaud: Active hearing, active speaking, in ISAAR 2007-International Symposium on Auditory and Audiological Research. 2007, pp. 33–46. [Google Scholar]
  53. K. van der Heijden, J.P. Rauschecker, E. Formisano, G. Valente, B. de Gelder: Active sound localization sharpens spatial tuning in human primary auditory cortex. Journal of Neuroscience 38, 40 (2018) 8574–8587. [Google Scholar]
  54. A. Portello, G. Bustamante, P. Danès, J. Piat, J. Manhes: Active localization of an intermittent sound source from a moving binaural sensor, in European Acoustics Association Forum Acusticum. 2014, 12 p. [Google Scholar]
  55. Y.-C. Lu, M. Cooke: Motion strategies for binaural localisation of speech sources in azimuth and distance by artificial listeners. Speech Communication 53, 5 (2011) 622–642. [Google Scholar]
  56. H. Wallach: The role of head movements and vestibular and visual cues in sound localization. Journal of Experimental Psychology 27, 4 (1940) 339. [Google Scholar]
  57. E.A. Macpherson: Cue weighting and vestibular mediation of temporal dynamics in sound localization via head rotation, in Proceedings of Meetings on Acoustics ICA2013, Vol. 19, Acoustical Society of America. 2013, 050131 p. [Google Scholar]
  58. F.L. Wightman, D.J. Kistler: Resolution of front–back ambiguity in spatial hearing by listener and source movement. The Journal of the Acoustical Society of America 105, 5 (1999) 2841–2853. [Google Scholar]
  59. W.R. Thurlow, P.S. Runge: Effect of induced head movements on localization of direction of sounds. The Journal of the Acoustical Society of America 42, 2 (1967) 480–488. [Google Scholar]
  60. D.R. Begault, E.M. Wenzel, M.R. Anderson: Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source, Journal of the Audio Engineering Society 49, 10 (2001) 904–916. [Google Scholar]
  61. T. Ashby, T. Brookes, R. Mason: Towards a head-movement-aware spatial localisation model: Elevation, in 21st International Congress on Sound and Vibration 2014, ICSV 2014, Vol. 4. 2014, pp. 2808–2815. [Google Scholar]
  62. D. Morikawa, Y. Toyoda, T. Hirahara: Head movement during horizontal and median sound localization experiments in which head-rotation is allowed, in Proceedings of Meetings on Acoustics ICA2013, Vol. 19, Acoustical Society of America. 2013, 050141 p. [Google Scholar]
  63. J. Burger: Front-back discrimination of the hearing systems. Acta Acustica United with Acustica 8, 5 (1958) 301–302. [Google Scholar]
  64. R. Pavão, E.S. Sussman, B.J. Fischer, J.L. Peña: Natural itd statistics predict human auditory spatial perception. eLife 9 (2020) e51927. https://doi.org/10.7554/eLife.51927. [Google Scholar]
  65. B. Bernschütz: Spherical Far-Field HRIR Compilation of the Neumann KU100. Zenodo, 2020. https://doi.org/10.5281/zenodo.3928297. [Google Scholar]
  66. T. Hirahara, D. Kojima, D. Morikawa, P. Mokhtari: The effect of head rotation on monaural sound-image localization in the horizontal plane. Applied Acoustics 178 (2021) 108008. https://www.sciencedirect.com/science/article/pii/S0003682X21001018. [Google Scholar]
  67. J. Leung, D. Alais, S. Carlile: Compression of auditory space during rapid head turns. Proceedings of the National Academy of Sciences 105, 17 (2008) 6492–6497. [Google Scholar]
  68. A. Honda, K. Ohba, Y. Iwaya, Y. Suzuki: Detection of sound image movement during horizontal head rotation. i-Perception 7, 5 (2016) 2041669516669614. [Google Scholar]
  69. J. Cooper, S. Carlile, D. Alais: Distortions of auditory space during rapid head turns. Experimental Brain Research 191, 2 (2008) 209–219. [Google Scholar]
  70. G.M. Gerken, V.K. Bhat, M. Hutchison-Clutter: Auditory temporal integration and the power function model. The Journal of the Acoustical Society of America 88, 2 (1990) 767–778. [Google Scholar]
  71. S. Carlile, V. Best: Discrimination of sound source velocity in human listeners. The Journal of the Acoustical Society of America 111, 2 (2002) 1026–1035. [Google Scholar]
  72. S. Carlile, K. Balachandar, H. Kelly: Accommodating to new ears: the effects of sensory and sensory-motor feedback. The Journal of the Acoustical Society of America 135, 4 (2014) 2002–2011. [Google Scholar]
  73. T.C. Freeman, J. Leung, E. Wufong, E. Orchard-Mills, S. Carlile, D. Alais: Discrimination contours for moving sounds reveal duration and distance cues dominate auditory speed perception. PLoS One 9, 7 (2014) e102864. [Google Scholar]
  74. J.A.G.-U. Calvo, M.M. van Wanrooij, A.J. Van Opstal: Adaptive response behavior in the pursuit of unpredictably moving sounds. Eneuro 8, 3 (2021). [Google Scholar]
  75. Y.A. Al’tman, I. Kudryavtseva, E. Radionova: The pattern of response of the inferior colliculus of the cat during the movement of a sound source. Neuroscience and Behavioral Physiology 15, 4 (1985) 318–324. [Google Scholar]
  76. G.D. Pollak: Circuits for processing dynamic interaural intensity disparities in the inferior colliculus. Hearing Research 288, 1–2 (2012) 47–57. [Google Scholar]
  77. N.J. Ingham, H.C. Hart, D. McAlpine: Spatial receptive fields of inferior colliculus neurons to auditory apparent motion in free field. Journal of Neurophysiology 85, 1 (2001) 23–33. [Google Scholar]
  78. H. Wagner, T. Takahashi: Influence of temporal cues on acoustic motion-direction sensitivity of auditory neurons in the owl. Journal of Neurophysiology 68, 6 (1992) 2063–2076. [Google Scholar]
  79. D. McAlpine, D. Jiang, T.M. Shackleton, A.R. Palmer: Responses of neurons in the inferior colliculus to dynamic interaural phase cues: evidence for a mechanism of binaural adaptation. Journal of Neurophysiology 83, 3 (2000) 1356–1365. [Google Scholar]
  80. L. Boucher, A. Lee, Y.E. Cohen, H.C. Hughes: Ocular tracking as a measure of auditory motion perception. Journal of Physiology-Paris 98, 1–3 (2004) 235–248. [Google Scholar]
  81. J. Kreitewolf, J. Lewald, S. Getzmann: Effect of attention on cortical processing of sound motion: An eeg study. NeuroImage 54, 3 (2011) 2340–2349. [Google Scholar]
  82. J.C. Middlebrooks: Sound localization. Handbook of Clinical Neurology 129 (2015) 99–116. [Google Scholar]
  83. N. Loveless, S. Levänen, V. Jousmäki, M. Sams, R. Hari: Temporal integration in auditory sensory memory: Neuromagnetic evidence. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 100, 3 (1996) 220–228. [Google Scholar]
  84. X. Teng, X. Tian, D. Poeppel: Testing multi-scale processing in the auditory system. Scientific Reports 6, 1 (2016) 34390. https://www.nature.com/articles/srep34390. [Google Scholar]
  85. N.F. Viemeister, G.H. Wakefield: Temporal integration and multiple looks. The Journal of the Acoustical Society of America 90, 2 (1991) 858–865. [Google Scholar]
  86. P.M. Hofman, A.J. Van Opstal: Spectro-temporal factors in two-dimensional human sound localization. The Journal of the Acoustical Society of America 103, 5 (1998) 2634–2648. [Google Scholar]
  87. J. Vliegen, T.J. Van Grootel, A.J. Van Opstal: Dynamic sound localization during rapid eye-head gaze shifts. Journal of Neuroscience 24, 42 (2004) 9291–9302. [Google Scholar]
  88. C. Baumann, C. Rogers, F. Massen: Dynamic binaural sound localization based on variations of interaural time delays and system rotations. The Journal of the Acoustical Society of America 138, 2 (2015) 635–650. [Google Scholar]
  89. M. Kumon, S. Uozumi: Binaural localization for a mobile sound source. Journal of Biomechanical Science and Engineering 6, 1 (2011) 26–39. [Google Scholar]
  90. R.A. Lutfi, W. Wang: Correlational analysis of acoustic cues for the discrimination of auditory motion. The Journal of the Acoustical Society of America 106, 2 (1999) 919–928. [Google Scholar]
  91. E. Schechtman, T. Shrem, L.Y. Deouell: Spatial localization of auditory stimuli in human auditory cortex is based on both head-independent and head-centered coordinate systems. Journal of Neuroscience 32, 39 (2012) 13501–13509. http://www.jneurosci.org/content/32/39/13501. https://doi.org/10.1523/JNEUROSCI.1315-12.2012. [Google Scholar]
  92. J. Lewald, H.-O. Karnath: Vestibular influence on human auditory space perception. Journal of Neurophysiology 84, 2 (2000) 1107–1111. [Google Scholar]
  93. I. Viaud-Delmon, O. Warusfel: From ear to body: The auditory-motor loop in spatial cognition. Frontiers in Neuroscience 8 (2014) 283. https://www.frontiersin.org/articles/10.3389/fnins.2014.00283/full. https://doi.org/10.3389/fnins.2014.00283. [Google Scholar]
  94. W.A. Yost, X. Zhong, A. Najam: Judging sound rotation when listeners and sounds rotate: Sound source localization is a multisystem process. The Journal of the Acoustical Society of America 138, 5 (2015) 3293–3310. https://asa.scitation.org/doi/10.1121/1.4935091. https://doi.org/10.1121/1.4935091. [Google Scholar]
  95. H. Goossens, A. Van Opstal: Influence of head position on the spatial representation of acoustic targets. Journal of Neurophysiology 81, 6 (1999) 2720–2736. [Google Scholar]
  96. W.O. Brimijoin, M.A. Akeroyd: The moving minimum audible angle is smaller during self motion than during source motion. Frontiers in Neuroscience 8 (2014) 273. [Google Scholar]
  97. H.-O. Karnath, D. Sievering, M. Fetter: The interactive contribution of neck muscle proprioception and vestibular stimulation to subjective “straight ahead” orientation in man. Experimental Brain Research 101, 1 (1994) 140–146. [Google Scholar]
  98. J. Kim, M. Barnett-Cowan, E.A. Macpherson: Integration of auditory input with vestibular and neck proprioceptive information in the interpretation of dynamic sound localization cues, in Proceedings of Meetings on Acoustics ICA2013, Vol. 19, Acoustical Society of America. 2013, 050142 p. [Google Scholar]
  99. D. Genzel, U. Firzlaff, L. Wiegrebe, P.R. MacNeilage: Dependence of auditory spatial updating on vestibular, proprioceptive, and efference copy signals. Journal of Neurophysiology 116, 2 (2016) 765–775. [Google Scholar]
  100. J. Lewald, W.H. Ehrenstein: The effect of eye position on auditory lateralization. Experimental Brain Research 108, 3 (1996) 473–485. [Google Scholar]
  101. D.C. Van Barneveld, A. John Van Opstal: Eye position determines audiovestibular integration during whole-body rotation. European Journal of Neuroscience 31, 5 (2010) 920–930. [Google Scholar]
  102. H.H. Goossens, A.J. Van Opstal: Human eye-head coordination in two dimensions under different sensorimotor conditions. Experimental Brain Research 114, 3 (1997) 542–560. [Google Scholar]
  103. W.R. Thurlow, J.W. Mangels, P.S. Runge: Head movements during sound localization. The Journal of the Acoustical society of America 42, 2 (1967) 489–493. [Google Scholar]
  104. D. Muir, J. Field: Newborn infants orient to sounds. Child Development 50 (1979) 431–436. [Google Scholar]
  105. J.H. Fuller: Head movement propensity. Experimental Brain Research 92, 1 (1992) 152–164. [Google Scholar]
  106. W.O. Brimijoin, D. McShefferty, M.A. Akeroyd: Auditory and visual orienting responses in listeners with and without hearing-impairment. The Journal of the Acoustical Society of America 127, 6 (2010) 3678–3688. [Google Scholar]
  107. A.W. Mills: On the minimum audible angle. The Journal of the Acoustical Society of America 30, 4 (1958) 237–246. [Google Scholar]
  108. S.R. Oldfield, S.P. Parker: Acuity of sound localisation: A topography of auditory space. I. Normal hearing conditions. Perception 13, 5 (1984) 581–600. [Google Scholar]
  109. J.A. Grange, J.F. Culling: The benefit of head orientation to speech intelligibility in noise. The Journal of the Acoustical Society of America 139, 2 (2016) 703–712. [Google Scholar]
  110. J.C. Middlebrooks: Narrow-band sound localization related to external ear acoustics. The Journal of the Acoustical Society of America 92, 5 (1992) 2607–2624. [Google Scholar]
  111. K.P. Körding, U. Beierholm, W.J. Ma, S. Quartz, J.B. Tenenbaum, L. Shams: Causal inference in multisensory perception. PLoS One 2, 9 (2007) e943. [Google Scholar]
  112. Y. Gu, D.E. Angelaki, G.C. DeAngelis: Neural correlates of multisensory cue integration in macaque MSTd. Nature Neuroscience 11, 10 (2008) 1201–1210. [Google Scholar]
  113. M. Ursino, A. Crisafulli, G. Di Pellegrino, E. Magosso, C. Cuppini: Development of a bayesian estimator for audio-visual integration: a neurocomputational study. Frontiers in Computational Neuroscience 11 (2017) 89. [Google Scholar]
  114. K.P. Körding, D.M. Wolpert: Bayesian integration in sensorimotor learning. Nature 427, 6971 (2004) 244–247. [Google Scholar]
  115. A.A. Stocker, E.P. Simoncelli: Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience 9, 4 (2006) 578–585. [Google Scholar]
  116. T.E. Hudson, L.T. Maloney, M.S. Landy: Movement planning with probabilistic target information. Journal of Neurophysiology 98, 5 (2007) 3034–3046. [Google Scholar]
  117. L. Bahl, J. Cocke, F. Jelinek, J. Raviv: Optimal decoding of linear codes for minimizing symbol error rate (corresp.). IEEE Transactions on Information Theory 20, 2 (1974) 284–287. [Google Scholar]
  118. P.M. Hofman, A.J. Van Opstal: Bayesian reconstruction of sound localization cues from responses to random spectra. Biological Cybernetics 86, 4 (2002) 305–316. [Google Scholar]
  119. J. Nix, V. Hohmann: Sound source localization in real sound fields based on empirical statistics of interaural parameters. The Journal of the Acoustical Society of America 119, 1 (2006) 463–479. [Google Scholar]
  120. D. Barber, A.T. Cemgil, S. Chiappa: Bayesian time series models. Cambridge University Press, 2011. [Google Scholar]
  121. C. Mark, C. Metzner, L. Lautscham, P.L. Strissel, R. Strick, B. Fabry: Bayesian model selection for complex dynamic systems. Nature Communications 9, 1 (2018) 1803. https://www.nature.com/articles/s41467-018-04241-5. https://doi.org/10.1038/s41467-018-04241-5. [Google Scholar]
  122. S. Särkkä: Bayesian filtering and smoothing, Institute of Mathematical Statistics Textbooks. Cambridge University Press, Cambridge, 2013. https://www.cambridge.org/core/books/bayesian-filtering-and-smoothing/C372FB31C5D9A100F8476C1B23721A67. [Google Scholar]
  123. E.A. Wan, R. Van Der Merwe, S. Haykin: The unscented kalman filter. Kalman Filtering and Neural Networks 5, 2007 (2001) 221–280. [Google Scholar]
  124. H. Li: A Brief Tutorial On Recursive Estimation: Examples From Intelligent Vehicle Applications. 2014. ffhal-01011733v2f. [Google Scholar]
  125. Y.E. Cohen, E.I. Knudsen: Maps versus clusters: Different representations of auditory space in the midbrain and forebrain. Trends in Neurosciences 22, 3 (1999) 128–135. [Google Scholar]
  126. A.S. Bregman; Auditory scene analysis: The perceptual organization of sound. MIT Press, 1994. [Google Scholar]
  127. D.A. Hambrook, M. Ilievski, M. Mosadeghzad, M. Tata: A bayesian computational basis for auditory selective attention using head rotation and the interaural time-difference cue. PLoS One 12, 10 (2017) e0186104. [Google Scholar]
  128. R.C. Luo, C.-C. Chang: Multisensor fusion and integration: A review on approaches and its applications in mechatronics. IEEE Transactions on Industrial Informatics 8, 1 (2011) 49–60. [Google Scholar]
  129. C. Schymura, T. Walther, D. Kolossa, N. Ma, G.J. Brown: Binaural sound source localisation using a Bayesian-network-based blackboard system and hypothesis-driven feedback, in Fourm Acusticum, European Acoustics Association. 2014. [Google Scholar]
  130. C. Schymura, F. Winter, D. Kolossa, S. Spors: Binaural sound source localisation and tracking using a dynamic spherical head model, in Sixteenth Annual Conference of the International Speech Communication Association. 2015. [Google Scholar]
  131. T. May, N. Ma, G.J. Brown: Robust localisation of multiple speakers exploiting head movements and multi-conditional training of binaural cues, in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. 2015, pp. 2679–2683. [Google Scholar]
  132. P. Aarabi: The fusion of distributed microphone arrays for sound localization. EURASIP Journal on Advances in Signal Processing 2003, 4 (2003) 1–10. [Google Scholar]
  133. J.-M. Valin, F. Michaud, J. Rouat: Robust localization and tracking of simultaneous moving sound sources using beamforming and particle filtering. Robotics and Autonomous Systems 55, 3 (2007) 216–228. [Google Scholar]
  134. E. Fosler-Lussier: Markov models and hidden markov models: A brief tutorial. International Computer Science Institute, 1998. [Google Scholar]
  135. E. Todorov: Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Computation 17, 5 (2005) 1084–1108. [Google Scholar]
  136. M.K. Stern, J.H. Johnson: Just noticeable difference, in The Corsini Encyclopedia of Psychology, John Wiley & Sons, Inc, Hoboken, NJ, USA. 2010, pp. 1–2. [Google Scholar]
  137. P. Majdak, C. Hollomey, R. Baumgartner: AMT 1.0: The toolbox for reproducible research in auditory modeling, submitted to Acta Acustica. 2021. [Google Scholar]
  138. V. Best, D. Brungart, S. Carlile, C. Jin, E. Macpherson, R. Martin, K. McAnally, A. Sabin, B. Simpson: A meta-analysis of localization errors made in the anechoic free field, in Principles and applications of spatial hearing , World Scientific. 2011, pp. 14–23. [Google Scholar]
  139. M.A.R. Ferreira, H. Lee: Multiscale modeling: A Bayesian perspective, Springer Series in Statistics. Springer-Verlag, New York, 2007. https://www.springer.com/gp/book/9780387708973. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.