Open Access
Acta Acust.
Volume 5, 2021
Article Number 46
Number of page(s) 18
Section Musical Acoustics
Published online 22 October 2021
  1. N.H. Fletcher, T. Rossing: The physics of musical instruments. Springer Science & Business Media, 1998. [CrossRef] [Google Scholar]
  2. J.-M. Chen, J. Smith, J. Wolfe: Saxophone acoustics: Introducing a compendium of impedance and sound spectra. Acoustics Australia 37, 1–19 (2009), 18–23. [Google Scholar]
  3. J. Kergomard, P. Guillemain, P. Sanchez, C. Vergez, J.-P. Dalmont, B. Gazengel, S. Karkar: Role of the resonator geometry on the pressure spectrum of reed conical instruments. Acta Acustica United with Acustica 105, 2 (2019) 368–380. [CrossRef] [Google Scholar]
  4. L. Teal: The Art of Saxophone Playing. The Art of Series. Summy-Birchard, 1963. [Google Scholar]
  5. V.R. Hasbrook: Alto Saxophone Mouthpiece Pitch and Its Relation to Jazz and Classical Tone Qualities. University of Illinois at Urbana-Champaign, 2005. [Google Scholar]
  6. J.-P. Dalmont, C. Frappe: Oscillation and extinction thresholds of the clarinet: Comparison of analytical results and experiments. The Journal of the Acoustical Society of America 122, 2 (2007) 1173–1179. [CrossRef] [PubMed] [Google Scholar]
  7. V. Chatziioannou, A. Hofmann, M. Pàmies-Vilà: An artificial blowing machine to investigate single-reed woodwind instruments under controlled articulation conditions, in Proceedings of Meetings on Acoustics 174ASA, 4–8 December 2017, New Orleans, Vol. 31. 2017, 035003 p. [Google Scholar]
  8. J.-P. Dalmont, J. Gilbert, S. Ollivier: Nonlinear characteristics of single-reed instruments: Quasistatic volume flow and reed opening measurements. The Journal of the Acoustical Society of America 114, 4 (2003) 2253–2262. [Google Scholar]
  9. F. Avanzini, M. Van Walstijn: Modelling the mechanical response of the reed-mouthpiece-lip system of a clarinet. Part I. A one-dimensional distributed model. Acta Acustica United with Acustica 90, 3 (2004) 537–547. [Google Scholar]
  10. V. Chatzionnou: Forward and inverse modelling of single-reed woodwind instruments with application to digital sound synthesis. PhD thesis.Queen’s University Belfast, 2011. [Google Scholar]
  11. F.S. Wyman: An Acoustical Study of Alto Saxophone Mouthpiece Chamber Design. Eastman School of Music, University of Rochester, 1972. [Google Scholar]
  12. F. Celentano, R. DiPasquale, E. Simoneau, N. May, Z. Shahbazi, S. Shahbazmohamadi: Reverse engineering and geometric optimization for resurrecting antique saxophone sound using micro-ct and additive manufacturing. Journal of Computing and Information Science in Engineering 17 (2017). [CrossRef] [Google Scholar]
  13. M. Ozdemir, G. Cascini: An experiment-driven mass-personalisation model: Application to saxophone mouthpiece production, in Proceedings of the Design Society: DESIGN Conference, Vol. 1. 2020, pp. 1037–1046. [Google Scholar]
  14. G. Taguchi, S. Chowdhury, Y. Wu: Taguchi’s Quality Engineering Handbook. John Wiley & Sons, Inc., 2004. [CrossRef] [Google Scholar]
  15. M.R. Pipes: A comparison of saxophone mouthpieces using fourier analysis to quantify perceived timbre. PhD thesis, University of Northern Colorado, 2018. [Google Scholar]
  16. A. Nykanen, Ã. Johansson, J. Lundberg, J. Berg: Perceptual and acoustical dimensions of saxophone sound, in Proceedings of Forum Acusticum 2005, 29 August–2 September 2005, Budapest. 2005. [Google Scholar]
  17. A. Nykanen, Ã. Johansson, J. Lundberg, J. Berg: Modelling perceptual dimensions of saxophone sounds. Acta Acustica United with Acustica 95 (2009) 539–549. [CrossRef] [Google Scholar]
  18. D.L. Wessel: Timbre space as a musical control structure. Computer Music Journal 3 (1979) 45–52. [CrossRef] [Google Scholar]
  19. R.A. Smith, D.M.A. Mercer: Possible causes of woodwind tone colour. Journal of Sound and Vibration 32, 3 (1974) 347 – IN1. [CrossRef] [Google Scholar]
  20. H. Pinksterboer: The Rough Guide to Saxophone. Rough Guide Tipbooks Series. Rough Guides, 2000. [Google Scholar]
  21. D. Liebman: Developing a Personal Saxophone Sound. Dorn Publications, 1989. [Google Scholar]
  22. V. Lorenzoni, D. Ragni: Experimental investigation of the flow inside a saxophone mouthpiece by particle image velocimetry. The Journal of the Acoustical Society of America 131, 1 (2012) 715–721. [CrossRef] [PubMed] [Google Scholar]
  23. A. Damodaran, M. Sugavaneswaran, L. Lessard: An overview of additive manufacturing technologies for musical wind instruments. SN Applied Sciences 3 (2021) 162. [CrossRef] [Google Scholar]
  24. A. Bacciaglia, A. Ceruti, A. Liverani: Evaluation of 3D printed mouthpieces for musical instruments. Rapid Prototyping Journal 26 (2019) 577–584. [CrossRef] [Google Scholar]
  25. B. Hang, G. Stetten: Novel saxophone mouthpiece design through additive manufacturing. University of Pittsburgh, 2017. [Google Scholar]
  26. P. Eveno, M. Carron: How is a custom saxophone mouthpiece even possible? Accessed: 2021-03-05. [Google Scholar]
  27. V. Lorenzoni, Z. Doubrovski, J. Verlinden: Embracing the digital in instrument making: Towards a musician-tailored mouthpiece by 3D printing, in Proceedings of Stockholm Music Acoustics Conference, 30 July–3 August 2013, Stockholm. 2013, pp. 419–424. [Google Scholar]
  28. M. Carron, T. Rotureau, F. Dubois, N. Misdariis, P. Susini: Speaking about sounds: a tool for communication on sound features. Journal of Design Research 15, 2 (2017) 85–109. [CrossRef] [Google Scholar]
  29. J.M. Chen, J. Smith, J. Wolfe: Experienced saxophonists learn to tune their vocal tracts. Science 319, 5864 (2008) 776. [CrossRef] [PubMed] [Google Scholar]
  30. J. Wolfe, N.H. Fletcher, J. Smith: The interactions between wind instruments and their players. Acta Acustica United with Acustica 101, 2 (2015) 211–223. [CrossRef] [Google Scholar]
  31. G.P. Scavone, A. Lefebvre, A.R. da Silva: Measurement of vocal-tract influence during saxophone performance. The Journal of the Acoustical Society of America 123, 4 (2008) 2391–2400. [CrossRef] [PubMed] [Google Scholar]
  32. M.M. Tseng, R.J. Jiao, C. Wang; Design for mass personalization. CIRP Annals 59, 1 (2010) 175–178. [CrossRef] [Google Scholar]
  33. M. Pàmies-Vilà, A. Hofmann, V. Chatziioannou: Analysis of tonguing and blowing actions during clarinet performance. Frontiers in Psychology 9 (2018) 617. [CrossRef] [PubMed] [Google Scholar]
  34. D.E. Norris: Measuring pitch flexibility on the saxophone. PhD thesis, Kansas State University, 1974. [Google Scholar]
  35. T. Liley, T. Dryer-Beers, K. Horch, D. Roach, N. Turner, S. Trier, G. Lewin, C. Davis: The Cambridge companion to the saxophone.. Cambridge University Press, 1998. [Google Scholar]
  36. Mouthpieces – YANAGISAWA Saxophones Official website. Accessed: 2021-05-20. [Google Scholar]
  37. V. Chatziioannou, S. Schmutzhard, M. Pàmies-Vilà, A. Hofmann: Investigating clarinet articulation using a physical model and an artificial blowing machine. Acta Acustica United with Acustica 105, 4 (2019) 682–694. [CrossRef] [Google Scholar]
  38. A. Almeida, D. George, J. Smith, J. Wolfe: The clarinet: How blowing pressure, lip force, lip position and reed “hardness” affect pitch, sound level, and spectrum. The Journal of the Acoustical Society of America 134, 3 (2013) 2247–2255. [CrossRef] [PubMed] [Google Scholar]
  39. M. Pàmies-Vilà: Expressive performance on single-reed woodwind instruments: An experimental characterisation of articulatory actions. PhD thesis, University of Music and Performing Arts Vienna, 2021. [Google Scholar]
  40. S. McAdams, K. Siedenburg, Perception and cognition of musical timbre, in Foundations in music psychology: Theory and research, The MIT Press. 2019, pp. 71–120. [Google Scholar]
  41. G. Peeters, B.L. Giordano, P. Susini, N. Misdariis, S. McAdams: The timbre toolbox: Extracting audio descriptors from musical signals. The Journal of the Acoustical Society of America 130, 5 (2011) 2902–2916. [CrossRef] [PubMed] [Google Scholar]
  42. B. Gazengel, J.P. Dalmont, J.F. Petiot: Link between objective and subjective characterizations of Bb clarinet reeds. Applied Acoustics 106 (2016) 155–166. [CrossRef] [Google Scholar]
  43. F.E. Harrell: Regression Modeling Strategies, Vol. 45 of Springer Series in Statistics. Springer International Publishing, Cham, 2015. [CrossRef] [Google Scholar]
  44. J.-P. Dalmont, J. Gilbert, J. Kergomard, S. Ollivier: An analytical prediction of the oscillation and extinction thresholds of a clarinet. The Journal of the Acoustical Society of America 118, 5 (2005) 3294–3305. [CrossRef] [PubMed] [Google Scholar]
  45. S. Wang, E. Maestre, G. Scavone: Acoustical modeling of the saxophone mouthpiece as a transfer matrix. The Journal of the Acoustical Society of America 149, 3 (2021) 1901–1912. [CrossRef] [PubMed] [Google Scholar]
  46. B. Andrieux, V. Gibiat, J. Selmer: Modeling of a woodwind mouthpiece using a finite-element method and characterization of its acoustic input impedance, in Proceedings of the International Symposium on Music Acoustics (ISMA) 2014, 7–12 July 2014, Le Mans. 2014, pp. 7–12. [Google Scholar]
  47. B.B. McShane, D. Gal: Statistical significance and the dichotomization of evidence. Journal of the American Statistical Association 112, 519 (2017) 885–895. [CrossRef] [Google Scholar]
  48. B.B. McShane, D. Gal, A. Gelman, C. Robert, J.L. Tackett: Abandon statistical significance. The American Statistician 73, Suppl. 1 (2019) 235–245. [CrossRef] [Google Scholar]
  49. M. Carron: The baffle: A true game changer. Accessed: 2021-03-05. [Google Scholar]
  50. M. Pàmies-Vilà, A. Hofmann, V. Chatziioannou: The influence of the vocal tract on the attack transients in clarinet playing. Journal of New Music Research 49, 2 (2020) 126–135. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.