Open Access
Scientific Article
Issue
Acta Acust.
Volume 5, 2021
Article Number 49
Number of page(s) 13
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2021045
Published online 19 November 2021
  1. H. Fletcher: Loudness, pitch, and the timbre of musical tones and their relation to the intensity, the frequency, and the overtone structure. The Journal of the Acoustical Society of America 6, 2 (1934) 59–69. [Google Scholar]
  2. H.B. Wallace: Musical instrument tuner. U.S. Patent 7 285 710, Oct 23, 2007. [Google Scholar]
  3. J. Schouten, R. Ritsma, B. Lopes Cardozo: Pitch of residue. The Journal of the Acoustical Society of America 34, 8 (1962) 1418–1424. [Google Scholar]
  4. E. Terhardt: Pitch, consonance, and harmony. The Journal of the Acoustical Society of America 55, 5 (1974) 1061–1069. [Google Scholar]
  5. E. Terhardt, G. Stoll, M. Seewann: Pitch of complex signals according to virtual-pitch theory: Tests, examples, and predictions. The Journal of the Acoustical Society of America 71, 3 (1982) 671–678. [Google Scholar]
  6. I. Nelken: Processing of complex sounds in the auditory system. Current Opinion in Neurobiology 18, 4 (2008) 413–417. [Google Scholar]
  7. J. Jaatinen, J. Pätynen, K. Alho: Octave stretching phenomenon with complex tones of orchestral instruments. The Journal of the Acoustical Society of America 146, 5 (2019) 3203–3214. [Google Scholar]
  8. P.G. Singh, I.J. Hirsh: Influence of spectral locus and F0 changes on the pitch and timbre of complex tones. The Journal of the Acoustical Society of America 92, 5 (1992) 2650–2661. [Google Scholar]
  9. F. Russo, W. Thompson: An interval size illusion: The influence of timbre on the perceived size of melodic intervals. Perception and Psychophysics 67, 4 (2005) 559–568. [Google Scholar]
  10. A. Vurma, J. Ross: Timbre-induced pitch deviations of musical sounds. Journal of Interdisciplinary Music Studies 1, 1 (2007) 33–50. [Google Scholar]
  11. A. Vurma, M. Raju, A. Kuuda: Does timbre affect pitch?: Estimations by musicians and non-musicians. Psychology of Music 39, 3 (2011) 291–306. [Google Scholar]
  12. S. Wold, K. Esbensen, P. Geladi: Principal component analysis. Chemometrics and Intelligent Laboratory Systems 2, 1–3 (1987) 37–52. [Google Scholar]
  13. E. Terhardt, G. Stoll, M. Seewann: Algorithm for extraction of pitch and pitch salience from complex tonal signals. The Journal of the Acoustical Society of America 71, 3 (1982) 679–688. [Google Scholar]
  14. S.S. Stevens: The relation of pitch to intensity. The Journal of the Acoustical Society of America 6, 3 (1935) 10. [Google Scholar]
  15. W.B. Snow: Change of pitch with loudness at low frequencies. The Journal of the Acoustical Society of America 8, 1 (1936) 14–19. [Google Scholar]
  16. C.T. Morgan, R. Galambos: A reinvestigation of the relation between pitch and intensity. The Journal of the Acoustical Society of America 15, 1 (1943) 77. [Google Scholar]
  17. A. Cohen: Further investigation of the effects of intensity upon the pitch of pure tones. The Journal of the Acoustical Society of America 33, 10 (1961) 1363–1376. [Google Scholar]
  18. D. Cabrera: AARAE 9, a Matlab-based measurement, processing, and analysis environment for audio and acoustic system responses. 2017. https://github.com/densilcabrera/aarae. Online: Accessed 23-Oct-2020. [Google Scholar]
  19. J.M. Grey, J.W. Gordon: Perceptual effects of spectral modifications on musical timbres. The Journal of the Acoustical Society of America 63, 5 (1978) 1493. [Google Scholar]
  20. R.J. Ritsma: Frequencies dominant in the perception of the pitch of complex sounds. The Journal of the Acoustical Society of America 42, 1 (1967) 191–198. [Google Scholar]
  21. B.C.J. Moore, B.R. Glasberg, R.W. Peters: Relative dominance of individual partials in determining the pitch of complex tones. The Journal of the Acoustical Society of America 77, 5 (1985) 1853–1860. [Google Scholar]
  22. H.M. Jackson, B.C.J. Moore: The dominant region for the pitch of complex tones with low fundamental frequencies. The Journal of the Acoustical Society of America 134, 2 (2013) 1193–1204. [Google Scholar]
  23. H. Dai: On the relative influence of individual harmonics on pitch judgment. The Journal of the Acoustical Society of America 107, 2 (2000) 953–959. [Google Scholar]
  24. G.M. Bidelman: Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. NeuroImage 175, May (2018) 56–69. [Google Scholar]
  25. R. Batra, K. Shigeyuki, V.L. Maher: The frequency-following tones to continuous tones in humans. Hearing Research 21 (1986) 167–177. [Google Scholar]
  26. T. Lu, X. Wang: Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat. Journal of Neurophysiology 84, 1 (2000) 236–246. [Google Scholar]
  27. C.J. Plack, D. Barker, D.A. Hall: Pitch coding and pitch processing in the human brain. Hearing Research 307 (2014) 53–64. [Google Scholar]
  28. V. De Angelis, F. De Martino, M. Moerel, R. Santoro, L. Hausfeld, E. Formisano: Cortical processing of pitch: Model-based encoding and decoding of auditory fMRI responses to real-life sounds. NeuroImage 180, March (2018) 291–300. [Google Scholar]
  29. A. Gerson, J.L. Goldstein: Evidence for a general template in central optimal processing for pitch of complex tones. The Journal of the Acoustical Society of America 63, 2 (1978) 498–510. [Google Scholar]
  30. A. Kohlrausch, A. Houtsma: Pitch related to spectral edges of broadband signals. Philosophical Transactions of the Royal Society 336, 1278 (1992) 375–382. [Google Scholar]
  31. J. Jaatinen, J. Pätynen, T. Lokki: Uncertainty in tuning evaluation with low-register complex tones of orchestra instruments. “Demonstration signals for low-note experiment”. Dataset (Version v1.0) [Data set]. Zenodo, 2021. https://doi.org/10.5281/zenodo.4697590. [Google Scholar]
  32. J. Jaatinen, J. Pätynen, T. Lokki: Uncertainty in tuning evaluation with low-register complex tones of orchestra instruments. “Demonstration figures for low-note experiment”. Dataset (Version v1.0) [Data set]. Zenodo, 2021. https://doi.org/10.5281/zenodo.4697596. [Google Scholar]
  33. K. Krumbholz, R.D. Patterson, D. Pressnitzer: The lower limit of pitch as determined by rate discrimination. The Journal of the Acoustical Society of America 108, 3 (2000) 1170–1180. [Google Scholar]
  34. T. Rogala, A. Miśkiewicz, P. Rogowski: Identification of harmonic musical intervals: The effect of pitch register and tone duration. Archives of Acoustics Dec., 4 (2017) 591–600. [Google Scholar]
  35. A.H. Mehta, A.J. Oxenham: Effect of lowest harmonic rank on fundamental-frequency difference limens varies with fundamental frequency. The Journal of the Acoustical Society of America 147, 4 (2020) 2314–2322. [Google Scholar]
  36. S. Lê, J. Josse, F. Husson: FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25, 1 (2008) 1–18. [Google Scholar]
  37. A. Miśkiewicz: Scientific legacy of professor Andrzej Rakowski in current studies of pitch discrimination in music. Vibrations in physical systems 30, 2019113 (2019) 1–8. [Google Scholar]
  38. ISO: 226: 2003: Acoustics-Normal equal-loudness-level contours. International Organization for Standardization 63, 2003. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.