Open Access
Scientific Article
Issue
Acta Acust.
Volume 5, 2021
Article Number 47
Number of page(s) 15
Section Musical Acoustics
DOI https://doi.org/10.1051/aacus/2021038
Published online 24 November 2021
  1. D.B. Sharp: Acoustic pulse reflectometry for the measurement of musical wind instruments. PhD Thesis. University of Edinburgh, 1996. [Google Scholar]
  2. N. Amir, U. Shimony, G. Rosenhouse: A discrete model for tubular acoustic systems with varying cross section – The direct and inverse problems. Part 1: Theory. Acta Acustica united with Acustica 81 (1995) 450–462. [Google Scholar]
  3. A. Li, D.B. Sharp: The problem of offset in measurements made using acoustic pulse reflectometry. Acta Acustica United with Acustica 91 (2005) 789–796. [Google Scholar]
  4. D.B. Sharp, H.A.K. Wright, W. Ring: An acoustical investigation into the effect of the crook profile on the sound produced by the Bassoon. Acta Acustica united with Acustica 89 (2003) 137–144. [Google Scholar]
  5. M. Curtit, F. Yahaya, J.P. Dalmont, J. Gilbert, O. Cottet: Bore reconstruction based on input impedance measurement: application to the bassoon crook. Vienna talks, 2010, 5. [Google Scholar]
  6. V. Chilekwa: Detecting, locating and sizing leaks in gas-filled pipes using acoustical measurements. PhD Thesis. The Open University, Milton Keynes UK, 2006. [Google Scholar]
  7. A. Mamou-Mani, D. Brian Sharp, T. Meurisse, W. Ring: Investigating the consistency of woodwind instrument manufacturing by comparing five nominally identical oboes. The Journal of the Acoustical Society of America 131 (2012) 728–736. [Google Scholar]
  8. W. Kausel: Optimization of brasswind instruments and its application in bore reconstruction. Journal of New Music Research 30 (2001) 69–82. [Google Scholar]
  9. S. Schmutzhard, V. Chatziioannou, A. Hofmann: Parameter optimisation of a viscothermal time-domain model for wind instruments, in International Symposium on Musical Acoustics, Montreal, 2017. [Google Scholar]
  10. D. Noreland: Gradient based optimisation of brass instruments, in Stockholm Music Acoustics Conference, Stockholm, Sweden, 2003. [Google Scholar]
  11. A.C.P. Braden, M.J. Newton, D.M. Campbell: Trombone bore optimization based on input impedance targets. The Journal of the Acoustical Society of America 125 (2009) 2404–2412. [Google Scholar]
  12. T. Colinot, P. Guillemain, J.-B. Doc, C. Vergez, M. Jousserand: Numerical optimization of a bicylindrical resonator impedance: differences and common features between a saxophone resonator and a bicylindrical resonator. Acta Acustica united with Acustica 105 (2019) 1217–1227. [Google Scholar]
  13. V. Debut, J. Kergomard, F. Laloë: Analysis and optimisation of the tuning of the twelfths for a clarinet resonator. Applied Acoustics 66 (2005) 365–409. [Google Scholar]
  14. A. Lefebvre: Computational acoustic methods for the design of woodwind instruments. PhD thesis. McGill University, 2010. [Google Scholar]
  15. D. Noreland, J. Kergomard, F. Laloë, C. Vergez, P. Guillemain, A. Guilloteau: The logical clarinet: numerical optimization of the geometry of woodwind instruments. Acta Acustica united with Acustica 99 (2013) 615–628. [Google Scholar]
  16. A. Guilloteau, P. Guillemain, J. Kergomard, M. Jousserand: On the second register’s playability of the clarinet: towards a multicriteria approach, in International Symposium on Musical Acoustics, Montreal, 2017, 1. [Google Scholar]
  17. A. Ernoult, C. Vergez, S. Missoum, P. Guillemain, M. Jousserand: Woodwind instrument design optimization based on impedance characteristics with geometric constraints. The Journal of the Acoustical Society of America 148 (2020) 2864–2877. [Google Scholar]
  18. R. Tournemenne, J.-F. Petiot, B. Talgorn, J. Gilbert, M. Kokkolaras: Sound simulation-based design optimization of brass wind instruments. The Journal of the Acoustical Society of America 145 (2019) 3795–3804. [Google Scholar]
  19. J. Virieux, S. Operto: An overview of full-waveform inversion in exploration geophysics. Geophysics 74 (2009) WCC1–WCC26. [Google Scholar]
  20. Open Wind INstrument Design. https://openwind.inria.fr, visited on Sept. 2021. [Google Scholar]
  21. R. Tournemenne, J. Chabassier: A comparison of a one-dimensional finite element method and the transfer matrix method for the computation of wind music instrument impedance. Acta Acustica united with Acustica 5 (2019) 838. [Google Scholar]
  22. A. Chaigne, J. Kergomard: Acoustics of Musical Instruments, in Modern Acoustics and Signal Processing. Springer, New York, 2016. [Google Scholar]
  23. V. Dubos, J. Kergomard, A. Khettabi, J.-P. Dalmont, D.H. Keefe, C.J. Nederveen: Theory of sound propagation in a duct with a branched tube using modal decomposition. Acta Acustica united with Acustica 85, 2 (1999) 153–169. [Google Scholar]
  24. A. Lefebvre, G.P. Scavone: Characterization of woodwind instrument toneholes with the finite element method. The Journal of the Acoustical Society of America 131, 4 (2012) 3153–3163. [Google Scholar]
  25. C.J. Nederveen, J.K.M. Jansen, R.R. Van Hassel: Corrections for woodwind tone-hole calculations. Acta Acustica united with Acustica 84, 5 (1998) 957–966. [Google Scholar]
  26. A. Semin: Propagation d’ondes dans des jonctions de fentes minces. PhD thesis. Université de Paris - Sud, 2010. [Google Scholar]
  27. S. Laurens, S. Tordeux, A. Bendali, M. Fares, P. Kotiuga: Lower and upper bounds for the Rayleigh conductivity of a perforated plate. ESAIM: Mathematical Modelling and Numerical Analysis 47 (2013) 1691–1712. [Google Scholar]
  28. F. Silva, P. Guillemain, J. Kergomard, B. Mallaroni, A.N. Norris: Approximation formulae for the acoustic radiation impedance of a cylindrical pipe. Journal of Sound and Vibration 322 (2009) 255–263. [Google Scholar]
  29. V. Gibiat, F. Laloë: Acoustical impedance measurements by the two-microphone-three-calibration (TMTC) method. The Journal of the Acoustical Society of America 88 (1990) 2533–2545. [Google Scholar]
  30. P. Dickens, J. Smith, J. Wolfe: Improved precision in measurements of acoustic impedance spectra using resonance-free calibration loads and controlled error distribution. The Journal of the Acoustical Society of America 121 (2007) 1471–1481. [Google Scholar]
  31. J.C. Le Roux, M. Pachebat, J.-P. Dalmont: A new impedance sensor for industrial applications, in Acoustics 2012 S.F. d’Acoustique, Editor. Nantes, France, 2012. [Google Scholar]
  32. H. Barucq, G. Chavent, F. Faucher: A priori estimates of attraction basins for nonlinear least squares, with application to Helmholtz seismic inverse problem. Inverse Problems 35 (2019) 115004. [Google Scholar]
  33. H. Barucq, R. Djellouli, E. Estecahandy: Fréchet differentiability of the elasto-acoustic scattered field with respect to Lipschitz domains’. Mathematical Methods in the Applied Sciences 40, 2 (2017) 404–414. [Google Scholar]
  34. R.-E. Plessix: A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International 167 (2006) 495–503. [Google Scholar]
  35. J. Nocedal, S.J. Wright: Numerical optimization. Springer Series in Operations Research, 2nd ed. New York, Springer, 2006. [Google Scholar]
  36. J.-P. Dalmont, C. Nederveen, N. Joly: Radiation impedance of tubes with different flanges: numerical and experimental investigations. Journal of Sound and Vibration 244 (2001) 505–534. [Google Scholar]
  37. D. Brandwood: A complex gradient operator and its application in adaptive array theory. IEE Proceedings H – Microwaves, Optics and Antennas 130 (1983) 11–16. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.