Open Access
Acta Acust.
Volume 5, 2021
Article Number 48
Number of page(s) 9
Section Aeroacoustics
Published online 16 November 2021
  1. F. Czwielong, S. Floss, M. Kaltenbacher, S. Becker: Influence of a micro-perforated duct absorber on sound emission and performance of axial fans. Applied Acoustics 174 (2021) 107746. [CrossRef] [Google Scholar]
  2. B. Dong, D. Xie, F. He, L. Huang: Noise attenuation and performance study of a small-sized contra-rotating fan with microperforated casing treatments. Mechanical Systems and Signal Processing 147 (2021) 107086. [CrossRef] [Google Scholar]
  3. S. Floss, F. Czwielong, M. Kaltenbacher, S. Becker: Design of an in-duct micro-perforated panel absorber for axial fan noise attenuation. Acta Acustica 5 (2021) 24. [CrossRef] [EDP Sciences] [Google Scholar]
  4. D.L. Sutliff, M.G. Jones, T.C. Hartley: High-speed turbofan noise reduction using foam-metal liner over-the-rotor. Journal of Aircraft 50 (2013) 1491–1503. [CrossRef] [Google Scholar]
  5. X.Q. Ma, Z.T. Su: Development of acoustic liner in aero engine: a review. Science China Technological Sciences 63 (2020) 2491–2504. [CrossRef] [Google Scholar]
  6. M. Carley: Series expansion for the sound field of rotating sources. The Journal of the Acoustical Society of America 120 (2006) 1252–1256. [CrossRef] [Google Scholar]
  7. M.A. Poletti: Series expansions of rotating two and three dimensional sound fields. The Journal of the Acoustical Society of America 128 (2010) 3363–3374. [CrossRef] [PubMed] [Google Scholar]
  8. D. Casalino: An advanced time approach for acoustic analogy predictions. Journal of Sound and Vibration 261 (2003) 583–612. [CrossRef] [Google Scholar]
  9. K.S. Brentner: An efficent and robust method for predicting helicopter high-speed impulsive noise. Journal of Sound and Vibration 203 (1997) 87–100. [CrossRef] [Google Scholar]
  10. F. Farassat: Derivation of formulations 1 and 1A of Farassat (NASA/TM-2007-214853) (2007). [Google Scholar]
  11. M. Poletti, P.D. Teal: Comparison of methods for calculating the sound field due to a rotating monopole. The Journal of the Acoustical Society of America 129 (2011) 3513–3520. [CrossRef] [PubMed] [Google Scholar]
  12. Y. Mao, C. Xu, D. Qi: Computation of instantaneous and time-averaged active acoustic intensity field around rotating source. Journal of Sound and Vibration 337 (2015) 95–115. [CrossRef] [Google Scholar]
  13. J. Prieur: Calculation of transonic rotor noise using a frequency domain formulation. AIAA Journal 26 (1988) 156–162. [CrossRef] [Google Scholar]
  14. D.B. Hanson: Direct frequency domain calculation of open rotor noise. AIAA Journal 30 (1992) 2334–2337. [CrossRef] [Google Scholar]
  15. M. Gennaretti, C. Testa, G. Bernardini: Frequency-domain method for discrete frequency noise prediction of rotors in arbitrary steady motion. Journal of Sound and Vibration 331 (2012) 5502–5517. [CrossRef] [Google Scholar]
  16. H. Tang, D. Qi, Y. Mao: Analysis on the frequency-domain numerical method to compute the noise radiated from rotating sources. Journal of Sound and Vibration 332 (2013) 6093–6103. [CrossRef] [Google Scholar]
  17. S. Haykin, M. Moher: An Introduction to Analog and Digital Communications. Wiley (2006). [Google Scholar]
  18. S. Maymon, A.V. Oppenheim: Sinc interpolation of nonuniform samples. IEEE Transactions on Signal Processing 59 (2011) 4745–4758. [CrossRef] [Google Scholar]
  19. F. Jacobsen: A note on instantaneous and time-averaged active and reactive sound intensity. Journal of Sound and Vibration 147 (1991) 489–496. [CrossRef] [Google Scholar]
  20. J. Kaiser, R. Schafer: On the use of the I0-sinh window for spectrum analysis. IEEE Transactions on Acoustics, Speech, and Signal Processing 28 (1980) 105–107. [CrossRef] [Google Scholar]
  21. S. Butterworth: On the theory of filter amplifiers. Experimental Wireless and the Wireless Engineer 7 (1930) 536–541. [Google Scholar]
  22. M.V. Lowson, R.J. Jupe: Wave forms for a supersonic rotor. Journal of Sound and Vibration 37 (1974) 475–489. [CrossRef] [Google Scholar]
  23. C. Ocker, W. Pannert: Acoustic ray method derived with the concept of analogue gravity for the calculation of the sound field due to rotating sound sources. Applied Acoustics 168, 107422 (2020). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.