Open Access
Technical & Applied Article
Issue
Acta Acust.
Volume 5, 2021
Article Number 37
Number of page(s) 6
Section Audio Signal Processing and Transducers
DOI https://doi.org/10.1051/aacus/2021032
Published online 26 August 2021
  1. K.H. Becker, U. Kogelschatz, K.H. Schoenbach, R.J. Barker (Eds.): Non-equilibrium air plasmas at atmospheric pressure. Institute of Physics Publishing, London, 2005. [Google Scholar]
  2. P. Bruggeman, R. Brandenburg: Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics. Journal of Physics D: Applied Physics 46 (2013) 464001. [CrossRef] [Google Scholar]
  3. P. Bruggeman, F. Iza, R. Brandenburg: Foundations of atmospheric pressure nonequilibrium plasmas. Plasma Sources Science and Technology 26 (2017) 123002. [CrossRef] [Google Scholar]
  4. J.R. Dwyer, M.A. Uman: The physics of lightning. Physics Reports 534 (2014) 147–241. [CrossRef] [Google Scholar]
  5. M.F.E. Barron: Auditorium acoustics and architectural design. Spun, London, 1993. [Google Scholar]
  6. C. Ayrault, Ph Béquin, S. Baudin: Characteristics of a spark discharge as an adjustable acoustic source for scale model measurements, in: Proceeding of the Acoustics 2012, Nantes, France, 2012. [Google Scholar]
  7. W. Du Bois Duddell: The musical arc. The Electrician 52 (1901) 902. [Google Scholar]
  8. J.-M. Ginoux: History of Nonlinear Oscillations Theory in France (1880–1940). Springer, Berlin Heidelberg, 2017. [CrossRef] [Google Scholar]
  9. F. Bastien: Acoustics and gas discharges: applications to loudspeakers. Journal of Physics D: Applied Physics 20 (1987) 1547–1557. [CrossRef] [Google Scholar]
  10. M.S. Mazzola, G.M. Molen: Modeling of a DC glow plasma loudspeaker. Journal of the Acoustical Society of America 81 (1987) 1972–1978. [CrossRef] [Google Scholar]
  11. Ph Béquin, K. Castor, Ph Herzog, V. Montembault: Modeling plasma loudspeakers. Journal of the Acoustical Society of America 121 (2007) 1960–1970. [CrossRef] [Google Scholar]
  12. Y. Sutton: Electro-acoustic coupling in a plasma gas. PhD dissertation, The Open University, Milton Keynes, UK, 2011. [Google Scholar]
  13. Ph Béquin, V. Joly, Ph Herzog: Corona discharge velocimeter. Acta Acustica United With Acustica 104 (2018) 477–485. [CrossRef] [Google Scholar]
  14. F.C. Lindvall: A glow discharge anemometer. IEEE 53 (1934) 1068–1073. [Google Scholar]
  15. P.A. Durbin, D.J. Mckinzie, E.J. Durbin: An anemometer for highly turbulent or recirculating flows. Experiments in Fluids 5 (1987) 184–188. [CrossRef] [Google Scholar]
  16. Ph Béquin, A. Nanda Tonlio, S. Durand: Air plasma sensor for the measurement of sound pressure using millimetric and micrometric discharges. Journal of Applied Physics 127 (2020) 034502. [CrossRef] [Google Scholar]
  17. P. Thomas: A diaphragmless microphone for radio broadcasting, in: Convention of the AIEE, New York, 1923. [Google Scholar]
  18. I. Dyer, B.W. Blum, U. Ingard: The interaction of a sound wave with a point-to-plane corona discharge. Journal of the Acoustical Society of America 25 (1953) 829–829. [CrossRef] [Google Scholar]
  19. J.A. Dayton, J.T. Verdeyen, P.F. Virobik: Method for detecting weak sound waves in a low pressure gas. Review of Scientific Instruments 34 (1963) 1451–1452. [CrossRef] [Google Scholar]
  20. W.R. Babcock, R.W. Hermsen: Glow discharge microphone. Review of Scientific Instruments 41 (1970) 1659–1660. [CrossRef] [Google Scholar]
  21. F.J. Fransson, E.V. Jansson: The stl-ionophone: transducer properties and construction. Journal of the Acoustical Society of America 58 (1975) 910–915. [CrossRef] [Google Scholar]
  22. H. Akino, H. Shimokawa, T. Kikutani, J. Green: On the study of the ionic microphone. Journal of the Audio Engineering Society 62 (2014) 254–264. [CrossRef] [Google Scholar]
  23. Ph Béquin, V. Joly, Ph Herzog: Modeling of a corona discharge microphone. Journal of Physics D: Applied Physics 46 (2013) 175204. [CrossRef] [Google Scholar]
  24. K.H. Schoenbach, K. Becker: 20 years of microplasma research: a status report. European Physical Journal D 70 (2016) 1–22. [CrossRef] [Google Scholar]
  25. M. Goldman, A. Goldman: Corona discharges, in: Gaseous Electronics, Hirsh M.N., Oskam H.J., Editors, Academic Press, New York, 1978. [Google Scholar]
  26. Y.P. Raiser: Gas Discharge Physics. Springer-Verlag, Berlin Heidelberg, 1991. [CrossRef] [Google Scholar]
  27. V.P. Nagorny: Statistical instability of barrier microdischarges operating in townsend regime. Journal of Applied Physics 101 (2007) 023302. [CrossRef] [Google Scholar]
  28. C. Lazzaroni, P. Chabert: Discharge resistance and power dissipation in the self-pulsing regime of micro-hollow cathode discharges. Plasma Sources Science and Technology 20 (2011) 055004. [CrossRef] [Google Scholar]
  29. A. Jenkins: Self-oscillation. Physics Reports 525 (2013) 167–222. [NASA ADS] [CrossRef] [Google Scholar]
  30. M.D. Yamanaka, H. Hirosawa, Y. Matsuzaka: Glow-discharge ionic anemometer. Review of Scientific Instruments 56 (1985) 617–622. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.