Acta Acust.
Volume 6, 2022
Topical Issue - Auditory models: from binaural processing to multimodal cognition
Article Number 34
Number of page(s) 23
Published online 12 August 2022
  1. M. Vorländer: Auralization – fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality, Springer, 2020. [Google Scholar]
  2. J. Blauert: Spatial hearing: the psychophysics of human sound localization, MIT Press, Cambridge, MA, 1997. [Google Scholar]
  3. H. Kayser, S.D. Ewert, J. Anemuller, T. Rohdenburg, V. Hohmann, B. Kollmeier: Database of multichannel in-ear and behind-the-ear head-related and binaural room impulse responses. EURASIP Journal on Advances in Signal Processing 2009 (2009) 6:1–6:10. [CrossRef] [Google Scholar]
  4. M.F. Mueller, A. Kegel, S.M. Schimmel, N. Dillier, M. Hofbauer: Localization of virtual sound sources with bilateral hearing aids in realistic acoustical scenes. The Journal of the Acoustical Society of America 131, 6 (2012) 4732–4742. [CrossRef] [PubMed] [Google Scholar]
  5. F. Denk, S.M.A. Ernst, S.D. Ewert, B. Kollmeier: Adapting hearing devices to the individual ear acoustics: database and target response correction functions for various device styles. Trends in Hearing 22 (2018) 2331216 518779313. [Google Scholar]
  6. F. Pausch, L. Aspock, M. Vorländer, J. Fels: An extended binaural real-time auralization system with an interface to research hearing aids for experiments on subjects with hearing loss. Trends in Hearing 22 (2018) 2331216518800871. [CrossRef] [Google Scholar]
  7. V. Durin, S. Carlile, P. Guillon, V. Best, S. Kalluri, Acoustic analysis of the directional information captured by five different hearing aid styles, The Journal of the Acoustical Society of America 136, 2 (2014) 818–828. [CrossRef] [PubMed] [Google Scholar]
  8. F. Denk, S.D. Ewert, B. Kollmeier: Spectral directional cues captured by hearing device microphones in individual human ears. The Journal of the Acoustical Society of America 144, 4 (2018) 2072–2087. [CrossRef] [PubMed] [Google Scholar]
  9. F. Denk, S.D. Ewert, B. Kollmeier: On the limitations of sound localization with hearing devices. The Journal of the Acoustical Society of America 146, 3 (2019) 1732–1744. [CrossRef] [PubMed] [Google Scholar]
  10. F. Pausch, J. Fels: Localization performance in a binaural real-time auralization system extended to research hearing aids. Trends in Hearing 24 (2020) 2331216520908704. [CrossRef] [Google Scholar]
  11. J.-M. Jot, V. Larcher, O. Warusfel: Digital signal processing issues in the context of binaural and transaural stereophony. Audio Engineering Society Convention 98 (1995) Feb. 1995. [Online]. Available: [Google Scholar]
  12. H. Møller, P. Minnaar, S.K. Olesen, F. Christensen, J. Plogsties: On the audibility of all-pass phase in electroacoustical transfer functions. Journal of the Audio Engineering Society 55, 3 (2007) 115–134. [Google Scholar]
  13. S. Mehrgardt, V. Mellert: Transformation characteristics of the external human ear. The Journal of the Acoustical Society of America 61, 6 (1977) 1567–1576. [CrossRef] [PubMed] [Google Scholar]
  14. D.J. Kistler, F.L. Wightman: A model of head- related transfer functions based on principal components analysis and minimum-phase reconstruction. The Journal of the Acoustical Society of America 91, 3 (1992) 1637–1647. [CrossRef] [PubMed] [Google Scholar]
  15. J. Plogsties, P. Minnaar, S.K. Olesen, F. Christensen, H. Moller: Audibility of all-pass components in head-related transfer functions. Audio Engineering Society Convention 108 108 (2000) Feb. 2000. [Online]. Available: [Google Scholar]
  16. R.S. Woodworth, H. Schlosberg: Experimental psychology. Rev ed., Holt, Oxford, England, 1954. [Google Scholar]
  17. G.F. Kuhn: Model for the interaural time differences in the azimuthal plane. The Journal of the Acoustical Society of America 62, 1 (1977) 157–167. [CrossRef] [Google Scholar]
  18. V.R. Algazi, C. Avendano, R.O. Duda: Estimation of a spherical-head model from anthropometry. Journal of the Audio Engineering Society 49, 6 (2001) 472–479. [Online]. Available: [Google Scholar]
  19. V.R. Algazi, R.O. Duda, D.M. Thompson, C. Avendano: The CIPIC HRTF database, in Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No. 01TH8575). 2001, 99–102. [CrossRef] [Google Scholar]
  20. R. Duda, C. Avendano, V. Algazi: An adaptable ellipsoidal head model for the interaural time difference, in 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No. 99CH36258), Vol. 2. 1999, 965–968. [CrossRef] [Google Scholar]
  21. R. Bomhardt, M. Lins, J. Fels: Analytical ellipsoidal model of interaural time differences for the individualization of head-related impulse responses. Journal of the Audio Engineering Society 64, 11 (2016) 882–894. [Online]. Available: [CrossRef] [Google Scholar]
  22. B.F.G. Katz: Boundary element method calculation of individual head-related transfer function. I. Rigid model calculation. The Journal of the Acoustical Society of America 110, 5 (2001) 2440–2448. [CrossRef] [PubMed] [Google Scholar]
  23. N.A. Gumerov, A.E. O’Donovan, R. Duraiswami, D.N. Zotkin: Computation of the head-related transfer function via the fast multipole accelerated boundary element method and its spherical harmonic representation. The Journal of the Acoustical Society of America 127, 1 (2010) 370–386. [CrossRef] [PubMed] [Google Scholar]
  24. H. Ziegelwanger, P. Majdak: Modeling the direction-continuous time-of-arrival in head-related transfer functions. The Journal of the Acoustical Society of America 135, 3 (2014) 1278–1293. [CrossRef] [PubMed] [Google Scholar]
  25. H. Ziegelwanger, P. Majdak, W. Kreuzer: Numerical calculation of listener-specific head-related transfer functions and sound localization: Microphone model and mesh discretization. The Journal of the Acoustical Society of America 138, 1 (2015) 208222. [CrossRef] [PubMed] [Google Scholar]
  26. N.L. Aaronson, W.M. Hartmann: Testing, correcting, and extending the Woodworth model for interaural time difference. The Journal of the Acoustical Society of America 135, 2 (2014) 817–823. [CrossRef] [PubMed] [Google Scholar]
  27. D. Romblom, H. Bahu: Blockhead: A simple geometric head model, in Audio Engineering Society Conference: 2019 AES International Conference on Headphone Technology, Aug. 2019 [Online]. Available: [Google Scholar]
  28. F. Denk, B. Kollmeier: The Hearpiece database of individual transfer functions of an in-the-ear earpiece for hearing device research. Acta Acustica 5 (2021) 2. [CrossRef] [EDP Sciences] [Google Scholar]
  29. A.H. Moore, J.M. de Haan, M.S. Pedersen, P.A. Naylor, M. Brookes, J. Jensen: Personalized signal-independent beamforming for binaural hearing aids. The Journal of the Acoustical Society of America 145, 5 (2019) 2971–2981. [CrossRef] [PubMed] [Google Scholar]
  30. F. Pausch, Z.E. Peng, L. Aspöck, J. Fels: Speech perception by children in a real-time virtual acoustic environment with simulated hearing aids and room acoustics, in 22nd International Congress on Acoustics: ICA 2016, Invited paper, Buenos Aires, Catholic University of Argentina: Asociacion de Acusticos Argentinos, Sep. 5, 2016. [Online]. Available: [Google Scholar]
  31. A.D. Brown, F.A. Rodriguez, C.D.F. Portnuff, M.J. Goupell, D.J. Tollin: Time-varying distortions of binaural information by bilateral hearing aids: effects of nonlinear frequency compression. Trends in Hearing 20 (2016) 2331216516668303. [CrossRef] [Google Scholar]
  32. F.P. Itturriet, M.H. Costa: Perceptually relevant preservation of interaural time differences in binaural hearing aids. IEEE/ACM Transactions on Audio, Speech, and Language Processing 27, 4 (2019) 753–764. [CrossRef] [Google Scholar]
  33. T.J. Klasen, T. Van den Bogaert, M. Moonen, J. Wouters: Binaural noise reduction algorithms for hearing aids that preserve interaural time delay cues. IEEE Transactions on Signal Processing 55, 4 (2007) 1579–1585. [CrossRef] [Google Scholar]
  34. T. Van de Bogaert, J. Wouters, T. Klasen, M. Moonen: Distortion of interaural time cues by directional noise reduction systems in modern digital hearing aids, in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2005, 57–60. [CrossRef] [Google Scholar]
  35. H. Husstedt, A. Mertins, M. Frenz: Evaluation of noise reduction algorithms in hearing aids for multiple signals from equal or different directions. Trends in Hearing 22 (2018) 2331216518803198. [CrossRef] [Google Scholar]
  36. M. Jeub, M. Schafer, T. Esch, P. Vary: Model-based dereverberation preserving binaural cues. IEEE Transactions on Audio, Speech, and Language Processing 18, 7 (2010) 1732–1745. [CrossRef] [Google Scholar]
  37. F. Brinkmann, A. Lindau, S. Weinzierl: On the authenticity of individual dynamic binaural synthesis. The Journal of the Acoustical Society of America 142, 4 (2017) 1784–1795. [CrossRef] [PubMed] [Google Scholar]
  38. A.W. Mills: On the minimum audible angle. The Journal of the Acoustical Society of America 30, 4 (1958) 237–246. [CrossRef] [Google Scholar]
  39. D.R. Perrott, S. Pacheco: Minimum audible angle thresholds for broadband noise as a function of the delay between the onset of the lead and lag signals. The Journal of the Acoustical Society of America 85, 6 (1989) 2669–2672. [CrossRef] [PubMed] [Google Scholar]
  40. D. Schröder: Physically based real-time auralization of interactive virtual environments. Ph.D. dissertation, Institute of Technical Acoustics, RWTH Aachen University, Germany. 2011. [Google Scholar]
  41. A. Lindau, H.-J. Maempel, S. Weinzierl: Minimum BRIR grid resolution for dynamic binaural synthesis. The Journal of the Acoustical Society of America 123, 5 (2008) 3498–3498. [CrossRef] [Google Scholar]
  42. F. Pausch, S. Doma, J. Fels: IHTA-indHARTF – database of individual behind-the-ear hearing-aid-related transfer functions with high spatial resolution, Institute for Hearing Technology and Acoustics, RWTH Aachen. 2022. [Google Scholar]
  43. The AMT Team: The auditory modeling toolbox full package (version 1.x), 2022. [Online]. Available: [Google Scholar]
  44. W. Hartmann, E. Macaulay: Anatomical limits on interaural time differences: An ecological perspective. Frontiers in Neuroscience 8 (2014) 34. [CrossRef] [PubMed] [Google Scholar]
  45. EU: European Union, Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation). Official Journal L110 59 (2016) 1–88. [Google Scholar]
  46. AES69-2020: AES69-2020, AES Standard for file exchange – Spatial acoustic data file format, Audio Engineering Society, Inc., New York, NY, USA, Standard AES69-2020, Dec. 6, 2020. p. 2020. [Google Scholar]
  47. F. Wefers: OpenDAFF – Ein freies quell-offenes Software-Paket fur richtungsabhängige Audiodaten, in Fortschritte der Akustik : 36. Deutsche Jahrestagung für Akustik; 15.–18. Marz 2010, Dt. Ges. fur Akustik, Berlin. 2010. [Online]. Available: [Google Scholar]
  48. L.L. Beranek, H.P. Sleeper: The design and construction of anechoic sound chambers. The Journal of the Acoustical Society of America 18, 1 (1946) 140–150. [Google Scholar]
  49. J.-G. Richter: Fast measurement of individual head-related transfer functions. Ph.D. Dissertation, RWTH Aachen University. 2019. [CrossRef] [Google Scholar]
  50. J. Richter, J. Fels: On the influence of continuous subject rotation during high-resolution head-related transfer function measurements. IEEE/ACM Transactions on Audio, Speech, and Language Processing 27, 4 (2019) 730–741. [CrossRef] [Google Scholar]
  51. P. Majdak, P. Balazs, B. Laback: Multiple exponential sweep method for fast measurement of head-related transfer functions. Journal of the Audio Engineering Society 55, 7/8 (2007) 623–637 [Online]. Available: [Google Scholar]
  52. P. Dietrich, B. Masiero, M. Vorländer: On the optimization of the multiple exponential sweep method. Journal of the Audio Engineering Society 61, 3 (2013) 113124 [Online]. Available: [Google Scholar]
  53. M. Berzborn, R. Bomhardt, J. Klein, J.-G. Richter, M. Vorländer: The ITA-Toolbox: An open source MATLAB toolbox for acoustic measurements and signal processing, in 43th Annual German Congress on Acoustics, 6 Mar 2016 – 9 Mar 2017, Kiel (Germany). 2019, pp. 222–225. [Google Scholar]
  54. F. Denk, J. Heeren, S.D. Ewert, B. Kollmeier, S.M. Ernst: Controlling the head position during individual HRTF measurements and its effect on accuracy, Fortschritte der Akustik-DAGA, Kiel, Germany. 2017. [Google Scholar]
  55. D.R. Begault, M. Godfroy, J.D. Miller, A. Roginska, M. Anderson, E.M. Wenzel: Design and verification of HeadZap, a semi-automated HRIR measurement system, in AES 120th Convention, 2006 May 20–23, Paris, France, 2006: 1–19. [Google Scholar]
  56. T. Hirahara, H. Sagara, I. Toshima, M. Otani: Head movement during head-related transfer function measurements. Acoustical Science and Technology 31, 2 (2010) 165–171. [CrossRef] [Google Scholar]
  57. O. Kirkeby, P.A. Nelson, H. Hamada, F. Orduna-Bustamante: Fast deconvolution of multichannel systems using regularization. IEEE Transactions on Speech and Audio Processing 6, 2 (1998) 189194. [CrossRef] [Google Scholar]
  58. S. Park, L. Linsen, O. Kreylos, J. Owens, B. Hamann: Discrete Sibson interpolation. IEEE Transactions on Visualization and Computer Graphics 12, 2 (2006) 243–253. [CrossRef] [PubMed] [Google Scholar]
  59. J.C. Middlebrooks: Individual differences in external-ear transfer functions reduced by scaling in frequency. The Journal of the Acoustical Society of America 106, 3 Pt 1 (1999) 1480–1492. [CrossRef] [PubMed] [Google Scholar]
  60. A. Andreopoulou, B.F.G. Katz: Identification of perceptually relevant methods of inter-aural time difference estimation. The Journal of the Acoustical Society of America 142, 2 (2017) 588–598. [CrossRef] [PubMed] [Google Scholar]
  61. M. Aussal, F. Alouges, B. Katz: HRTF interpolation and ITD personalization for binaural synthesis using spherical harmonics, in Audio Engineering Society Conference: UK 25th Conference: Spatial Audio in Today’s 3D World, Mar. 2012. [Online]. Available: [Google Scholar]
  62. J.-G. Richter, G. Behler, J. Fels, Evaluation of a fast HRTF measurement system, in Audio Engineering Society Convention 140, Audio Engineering Society. 2016. [Google Scholar]
  63. E.H.A. Langendijk, A.W. Bronkhorst: Contribution of spectral cues to human sound localization. The Journal of the Acoustical Society of America 112, 4 (2002) 1583–1596. [CrossRef] [PubMed] [Google Scholar]
  64. M.D. Abràmoff, P.J. Magalhães, S.J. Ram: Image processing with ImageJ. Biophotonics International 11, 7 (2004) 36–42. [Google Scholar]
  65. T. Wei, V. Simko, R package “corrplot”: visualization of a correlation matrix (Version 0.84). 2017 [Online]. Available: [Google Scholar]
  66. J.W. Kling, L.A. Riggs: Woodworth & Schlosberg’s experimental psychology. 1971. [Google Scholar]
  67. R Core Team: Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021 [Online]. Available: [Google Scholar]
  68. RStudio Team: RStudio: integrated development environment for R, RStudio, PBC, Boston, MA. 2021 [Online]. Available: [Google Scholar]
  69. R.V.L. Hartley, T.C. Fry: The binaural location of pure tones. Physical Review 18 (1921) 431–442. [CrossRef] [Google Scholar]
  70. D.S. Brungart, W.M. Rabinowitz: Auditory localization of nearby sources. Head-related transfer functions. The Journal of the Acoustical Society of America 106, 3 (1999) 1465–1479. [CrossRef] [PubMed] [Google Scholar]
  71. J.C. Nash: nlmrt: Functions for nonlinear least squares solutions. R package version 2016.3.2. 2016. [Online]. Available: [Google Scholar]
  72. D.C. Montgomery, E.A. Peck, G.G. Vining: Introduction to linear regression analysis, John Wiley & Sons. 2021. [Google Scholar]
  73. P. Mair, R. Wilcox: Robust statistical methods in R using the WRS2 package. Behavior Research Methods 52 (2020) 464–488. [CrossRef] [PubMed] [Google Scholar]
  74. R.R. Wilcox: Improved simultaneous confidence intervals for linear contrasts and regression parameters. Communications in Statistics – Simulation and Computation 15, 4 (1986) 917–932. [CrossRef] [Google Scholar]
  75. H.S. Braren, J. Fels: A high-resolution individual 3D adult head and torso model for HRTF simulation and validation: HRTF measurement, 2020. Published under Creative Commons Attribution 4.0 License. [Google Scholar]
  76. A. Mäkivirta, M. Malinen, J. Johansson, V. Saari, A. Karjalainen, P. Vosough: Accuracy of photogrammetric extraction of the head and torso shape for personal acoustic HRTF modeling, in Audio Engineering Society Convention 148, May 2020 [Online]. Available: [Google Scholar]
  77. R.G. Klumpp, H.R. Eady: Some measurements of interaural time difference thresholds. The Journal of the Acoustical Society of America 28, 5 (1956) 859–860. [CrossRef] [Google Scholar]
  78. W.A. Yost: Discriminations of interaural phase differences. The Journal of the Acoustical Society of America 55, 6 (1974) 1299–1303. [CrossRef] [PubMed] [Google Scholar]
  79. S. Thavam, M. Dietz: Smallest perceivable interaural time differences. The Journal of the Acoustical Society of America 145, 1 (2019) 458–468. [CrossRef] [PubMed] [Google Scholar]
  80. L.S.R. Simon, A. Andreopoulou, B.F.G. Katz: Investigation of perceptual interaural time difference evaluation protocols in a binaural context. Acta Acustica united with Acustica 102, 1 (2016) 129–140. [CrossRef] [Google Scholar]
  81. S. Klockgether, S. van de Par: Just noticeable differences of spatial cues in echoic and anechoic acoustical environments. The Journal of the Acoustical Society of America 140, 4 (2016) EL352–EL357. [CrossRef] [PubMed] [Google Scholar]
  82. N.J. Spencer, M.L. Hawley, H.S. Colburn: Relating interaural difference sensitivities for several parameters measured in normal-hearing and hearing- impaired listeners. The Journal of the Acoustical Society of America 140, 3 (2016) 1783–1799. [CrossRef] [PubMed] [Google Scholar]
  83. C. Geetha, R.R. Rajan, K. Tanniru: A review of the performance of wireless synchronized hearing aids. Journal of Hearing Science 5, 4 (2015) 912. [Google Scholar]
  84. P. Derleth, E. Georganti, M. Latzel, G. Courtois, M. Hofbauer, J. Raether, V. Kuehnel: Binaural signal processing in hearing aids. Seminars in Hearing 42 (2021) 206–223. Thieme Medical Publishers, Inc. [CrossRef] [PubMed] [Google Scholar]
  85. D.T. Lawson, B.S. Wilson, M. Zerbi, C. van den Honert, C.C. Finley, J.C. Farmer Jr, J.T. McElveen Jr, P.A. Roush: Bilateral cochlear implants controlled by a single speech processor. American Journal of Otology 19, 6 (1998) 758–761. [Google Scholar]
  86. T. Francart, J. Brokx, J. Wouters: Sensitivity to interaural time differences with combined cochlear implant and acoustic stimulation. Journal of the Association for Research in Otolaryngology 10, 1 (2009) 131–141. [CrossRef] [PubMed] [Google Scholar]
  87. V. Larcher, J.-M. Jot: Techniques d’interpolation de filtres audio-numeriques, Applicationa la reproduction spatiale des sons sur ecouteurs, in Proc. CFA: Congres Francais d’Acoustique, Citeseer. 1997. [Google Scholar]
  88. L. Savioja, J. Huopaniemi, T. Lokki, R. Väänänen: Creating interactive virtual acoustic environments. Journal of the Audio Engineering Society 47, 9 (1999) 675–705 [Online]. Available: [Google Scholar]
  89. P. Majdak, C. Hollomey, R. Baumgartner: AMT 1.x: A toolbox for reproducible research in auditory modeling, Acta Acustica 6 (2022) 19. [CrossRef] [EDP Sciences] [Google Scholar]
  90. G.A. Seber, A.J. Lee: Linear regression analysis, John Wiley & Sons. 2012. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.