Issue |
Acta Acust.
Volume 6, 2022
Topical Issue - Auditory models: from binaural processing to multimodal cognition
|
|
---|---|---|
Article Number | 23 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.1051/aacus/2022018 | |
Published online | 08 June 2022 |
- D.S. Brungart, N. Iyer: Better-ear glimpsing efficiency with symmetrically-placed interfering talkers. Journal of the Acoustical Society of America 132 (2012) 2545–2556. https://doi.org/10.1121/1.4747005. [CrossRef] [PubMed] [Google Scholar]
- S.D. Ewert, W. Schubotz, T. Brand, B. Kollmeier: Binaural masking release in symmetric listening conditions with spectro-temporally modulated maskers. Journal of the Acoustical Society of America 142 (2017) 12–28. https://doi.org/10.1121/1.381578. [CrossRef] [PubMed] [Google Scholar]
- I. Hirsh: The influence of interaural phase on interaural summation and inhibition. Journal of the Acoustical Society of America 20 (1948) 536–544. https://doi.org/10.1121/1.1916992. [CrossRef] [Google Scholar]
- S. van de Par, A. Kohlrausch: Dependence of binaural masking level differences on center frequency, masker bandwidth and interaural parameters. Journal of the Acoustical Society of America 106 (1999) 1940–1947. https://doi.org/10.1121/1.427942. [CrossRef] [PubMed] [Google Scholar]
- T. Dau, B. Kollmeier, A. Kohlrausch: Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. Journal of the Acoustical Society of America 102 (1997) 2892–2905. https://doi.org/10.1121/1.420344. [CrossRef] [PubMed] [Google Scholar]
- T. Dau, B. Kollmeier, A. Kohlrausch: Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. Journal of the Acoustical Society of America 102 (1997) 2906–2919. https://doi.org/10.1121/1.420345. [CrossRef] [PubMed] [Google Scholar]
- S.D. Ewert, T. Dau: Characterizing frequency selectivity for envelope fluctuations. Journal of the Acoustical Society of America 108 (2000) 1181–1196. https://doi.org/10.1121/1.1288665. [CrossRef] [Google Scholar]
- J. Breebaart, S. van de Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. I. Model setup. Journal of the Acoustical Society of America 110 (2001) 1074–1088. https://doi.org/10.1121/1.1383297. [CrossRef] [PubMed] [Google Scholar]
- T. Biberger, S.D. Ewert: Envelope and intensity based prediction of psychoacoustic masking and speech intelligibility. Journal of the Acoustical Society of America 140 (2016) 1023–1038. https://doi.org/10.1121/1.4960574. [CrossRef] [PubMed] [Google Scholar]
- B.C.J. Moore, C.-T. Tan: Development and validation of a method for predicting the perceived naturalness of sounds subjected to spectral distortion. Journal of the Audio Engineering Society 52 (2004) 900–914. [Google Scholar]
- K.S. Rhebergen, N.J. Versfeld: A speech intelligibility index-based approach to predict the speech reception threshold for sentences in fluctuating noise for normal-hearing listeners. Journal of the Acoustical Society of America 117 (2005) 2181–2192. https://doi.org/10.1121/1.1861713. [CrossRef] [PubMed] [Google Scholar]
- R. Beutelmann, T. Brand, B. Kollmeier: Revision, extension and evaluation of a binaural speech intelligibility model. Journal of the Acoustical Society of America 127 (2010) 2479–2497. https://doi.org/10.1121/1.3295575. [CrossRef] [PubMed] [Google Scholar]
- M. Lavandier, J.F. Culling: Prediction of binaural speech intelligibility against noise in rooms. Journal of the Acoustical Society of America 127 (2010) 387–399. https://doi.org/10.1121/1.3268612. [CrossRef] [PubMed] [Google Scholar]
- A.H. Andersen, J.M. de Haan, Z.-H. Tan, J. Jensen: Predicting the intelligibility of noisy and non-linearly processed binaural speech. IEEE/ACM Transactions on speech, Audio and Language Processing 24 (2016) 1908–1920. https://doi.org/10.1109/TASLP.2016.2588002. [CrossRef] [Google Scholar]
- J.-H. Fleßner, R. Huber, S.D. Ewert: Assessment and prediction of binaural aspects of audio quality. Journal of the Audio Engineering Society 65 (2017) 929–942. https://doi.org/10.17743/jaes.2017.0037. [CrossRef] [Google Scholar]
- T. Biberger, J.-H. Fleßner, R. Huber, S.D. Ewert: An objective audio quality measure based on power and envelope power cues. Journal of the Audio Engineering Society 66 (2018) 578–593. https://doi.org/10.17743/jaes.2018.0031. [CrossRef] [Google Scholar]
- J.-H. Fleßner, T. Biberger, S.D. Ewert: Subjective and objective assessment of monaural and binaural aspects of audio quality. IEEE Transactions on Audio, Speech and Language Processing 27 (2019) 1112–1125. https://doi.org/10.1109/TASLP.2019.2904850. [CrossRef] [Google Scholar]
- T. Biberger, H. Schepker, F. Denk, S.D. Ewert: Instrumental quality predictions and analysis of auditory cues for algorithms in modern headphone technology. Trends in Hearing 25 (2021) 1–22. https://doi.org/10.1177/23312165211001219. [CrossRef] [Google Scholar]
- R.D. Patterson, B.C.J. Moore: Auditory filters and excitation patterns as representations of frequency resolution. In: B.C.J. Moore, Ed. Frequency selectivity in hearing. London: Academic Press, 1986. [Google Scholar]
- C.J. Plack, A.J. Oxenham: Basilar-membrane nonlinearity and the growth of forward masking. Journal of the Acoustical Society of America 103 (1998) 1598–1608. https://doi.org/10.1121/1.421294. [CrossRef] [PubMed] [Google Scholar]
- H. Fletcher: Auditory patterns. Reviews of Modern Physics 12 (1940) 47–65. https://doi.org/10.1103/RevModPhys.12.47. [CrossRef] [Google Scholar]
- N.F. Viemeister: Temporal modulation transfer functions based upon modulation thresholds. Journal of the Acoustical Society of America 66 (1979) 1364–1380. https://doi.org/10.1121/1.383531. [CrossRef] [PubMed] [Google Scholar]
- B.R. Glasberg, B.C.J. Moore: Development and evaluation of a model for predicting the audibility of time-varying sounds in the presence of background sounds. Journal of the Audio Engineering Society 53 (2005) 906–918. [Google Scholar]
- M.L. Jepsen, S.D. Ewert, T. Dau: A computational model of human auditory signal processing and perception. Journal of the Acoustical Society of America 124 (2008) 422–438. https://doi.org/10.1121/1.2924135. [CrossRef] [PubMed] [Google Scholar]
- S. Jørgensen, S.D. Ewert, T. Dau: A multi-resolution envelope-power based model for speech intelligibility. Journal of the Acoustical Society of America 134 (2013) 436–446. https://doi.org/10.1121/1.4807563. [CrossRef] [PubMed] [Google Scholar]
- T. Biberger, S.D. Ewert: The role of short-time intensity and envelope power for speech intelligibility and psychoacoustic masking. Journal of the Acoustical Society of America 142 (2017) 1098–1111. https://doi.org/10.1121/1.4999059. [CrossRef] [PubMed] [Google Scholar]
- L.A. Jeffress: A place theory of sound localization. Journal of Comparative and Physiological Psychology 41 (1948) 35–39. https://doi.org/10.1037/h0061495. [CrossRef] [PubMed] [Google Scholar]
- N.I. Durlach: Equalization and cancellation theory of binaural masking-level differences. Journal of the Acoustical Society of America 35 (1963) 1206–1218. https://doi.org/10.1121/1.1918675. [CrossRef] [Google Scholar]
- W. Lindemann: Extension of a binaural cross-correlation model by contralateral inhibition. Journal of the Acoustical Society of America 80 (1986) 1608–1622. https://doi.org/10.1121/1.394325. [CrossRef] [PubMed] [Google Scholar]
- R.M. Stern, G.D. Shear: Lateralization and detection of low-frequency binaural stimuli: Effects of distribution of internal delay. Journal of the Acoustical Society of America 100 (1996) 2278–2288. https://doi.org/10.1121/1.417937. [CrossRef] [Google Scholar]
- L.R. Bernstein, C. Trahiotis: Enhancing interaural-delay-based extents of laterality at high frequencies by using “transposed stimuli”. Journal of the Acoustical Society of America 113 (2003) 3335–3347. https://doi.org/10.1121/1.1570431. [CrossRef] [Google Scholar]
- L.R. Bernstein, C. Trahiotis: Lateralization produced by interaural temporal and intensitive disparities of high-frequency, raised-sine stimuli: Data and modeling. Journal of the Acoustical Society of America 131 (2012) 409–415. https://doi.org/10.1121/1.3662056. [CrossRef] [PubMed] [Google Scholar]
- M. Dietz, S.D. Ewert, V. Hohmann, B. Kollmeier: Coding of temporally fluctuating interaural timing disparities in a binaural processing model based on phase differences. Brain Research 1220 (2008) 234–245. https://doi.org/10.1016/j.brainres.2007.09.026. [CrossRef] [PubMed] [Google Scholar]
- J. Klug, L. Schmors, G. Ashida, M. Dietz: Neural rate difference model can account for lateralization of high frequency stimuli. Journal of the Acoustical Society of America 148 (2020) 678–691. https://doi.org/10.1121/10.0001602. [CrossRef] [PubMed] [Google Scholar]
- S. Doclo, S. Gannot, D. Marquardt, E. Hadad: Binaural speech processing with application to hearing devices. In: E. Vincent, T. Virtanen, S. Gannot, Eds. Audio source separation and speech enhancement, Wiley, 2018. https://doi.org/10.1002/9781119279860.ch18. [Google Scholar]
- R. Wan, N.I. Durlach, H.S. Colburn: Application of a short-time version of the equalization-cancellation model to speech intelligibility experiments with speech maskers. Journal of the Acoustical Society of America 136 (2014) 768–776. https://doi.org/10.1121/1.4884767. [CrossRef] [PubMed] [Google Scholar]
- A. Chabot-Leclerc, E.N. MacDonald, T. Dau: Predicting binaural speech intelligibility using the signal-to-noise ratio in the envelope power spectrum domain. Journal of the Acoustical Society of America 140 (2016) 192–205. https://doi.org/10.1121/1.4954254. [CrossRef] [PubMed] [Google Scholar]
- J. Breebaart, S. van de Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters. Journal of the Acoustical Society of America 110 (2001) 1089–1104. https://doi.org/10.1121/1.1383298. [Google Scholar]
- J. Breebaart, S. van de Par, A. Kohlrausch: Binaural processing model based on contralateral inhibition. III. Dependence on temporal parameters. Journal of the Acoustical Society of America 110 (2001) 1105–1117. https://doi.org/10.1121/1.1383299. [CrossRef] [PubMed] [Google Scholar]
- P.M. Briley, A.M. Goman, A.Q. Summerfield: Physiological evidence for a midline spatial channel in human auditory cortex. JARO: Journal of the Association for Research in Otolaryngology 17 (2016) 331–340. https://doi.org/10.1007/s10162-016-0571-y. [CrossRef] [PubMed] [Google Scholar]
- B. Grothe, M. Pecka: The natural history of sound localization in mammals – a story of neuronal inhibition. Frontiers in Neural Circuits 8 (2014) 116. https://doi.org/10.3389/fncir.2014.00116. [CrossRef] [PubMed] [Google Scholar]
- M. Pecka, A. Brand, O. Behrend, B. Grothe: Interaural time difference processing in the mammalian medial superior olive: The role of glycinergic inhibition. Journal of Neuroscience 28 (2008) 6914–6925. https://doi.org/10.1523/JNEUROSCI.1660-08.2008. [CrossRef] [PubMed] [Google Scholar]
- B. Grothe, M. Pecka, D. McAlpine: Mechanisms of sound localization in mammals. Physiological Reviews 90 (2010) 983–1012. https://doi.org/10.1152/physrev.00026.2009. [PubMed] [Google Scholar]
- S. Kortlang, M. Mauermann, S.D. Ewert: Suprathreshold auditory processing deficits in noise: Effects of hearing loss and age. Hearing Research 331 (2016) 27–40. https://doi.org/10.1016/j.heares.2015.10.004. [CrossRef] [PubMed] [Google Scholar]
- N. Paraouty, S.D. Ewert, N. Wallaert, C. Lorenzi: Interactions between amplitude modulation and frequency modulation processing: Effects of age and hearing loss. Journal of the Acoustical Society of America 140 (2016) 121–131. https://doi.org/10.1121/1.4955078. [CrossRef] [PubMed] [Google Scholar]
- N. Wallaert, B.C.J. Moore, C. Lorenzi: Comparing the effects of age on amplitude modulation detection. Journal of the Acoustical Society of America 139 (2016) 3088–3096. https://doi.org/10.1121/1.4953019. [CrossRef] [PubMed] [Google Scholar]
- N. Wallaert, B.C.J. Moore, S.D. Ewert, C. Lorenzi: Sensorineural hearing loss enhances auditory sensitivity and temporal integration for amplitude modulation. Journal of the Acoustical Society of America 141 (2017) 971–980. https://doi.org/10.1121/1.4976080. [CrossRef] [PubMed] [Google Scholar]
- S.D. Ewert, N. Paraouty, C. Lorenzi: A two-path model of auditory modulation detection using temporal fine structure and envelope cues. European Journal of Neuroscience 51 (2018) 1265–1278. https://doi.org/10.1111/ejn.13846. [Google Scholar]
- S.D. Ewert: Defining the proper stimulus and its ecology – mammals. In: B. Fritzsch (Ed.), The senses: A comprehensive reference, Elsevier, 2020. https://doi.org/10.1016/B978-0-12-809324-5.24238-7. [Google Scholar]
- ISO 389-7: Acoustics-reference zero for the calibration of audiometric equipment. Part 7: Reference threshold of hearing under free-field and diffuse-field listening conditions. International Organization for Standardization, Geneva, Switzerland, 2005. [Google Scholar]
- B.C.J. Moore, B.R. Glasberg: Suggested formulae for calculating auditory filter bandwidth and excitation patterns. Journal of the Acoustical Society of America 74 (1983) 750–753. https://doi.org/10.1121/1.389861. [CrossRef] [PubMed] [Google Scholar]
- T. Marquardt, D. McAlpine: A π-limit for coding ITDs: Implications for binaural models. In: B. Kollmeier, Ed. Hearing – From sensory processing to perception, Springer, 2007. https://doi.org/10.1007/978-3-540-73009-5_44. [Google Scholar]
- A. Kohlrausch, R. Fassel, T. Dau: The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers. Journal of the Acoustical Society of America 108 (2000) 723–734. https://doi.org/10.1121/1.429605. [CrossRef] [PubMed] [Google Scholar]
- B.C.J. Moore: An Introduction to the Psychology of Hearing, 4th ed., Academic, London, 1997. [Google Scholar]
- J.L. Verhey, T. Dau, B. Kollmeier: Within-channel cues in comodulation masking release (CMR): Experiments and model predictions using a modulation-filterbank model. Journal of the Acoustical Society of America 106 (1999) 2733–2745. https://doi.org/10.1121/1.428101. [CrossRef] [PubMed] [Google Scholar]
- W.P. Tanner, R.D. Sorkin: The theory of signal detectability. In: J.V. Tobias, Ed. Foundation of modern auditory function, Academic, New York, 1972. [Google Scholar]
- S. Jørgensen, T. Dau: Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing. Journal of the Acoustical Society of America 130 (2011) 1475–1487. https://doi.org/10.1121/1.3621502. [CrossRef] [PubMed] [Google Scholar]
- ANSI S3.5: Methods for calculation of the speech intelligibility index (Standards Secreteriat). Acoustical Society of America, New York, 1997. [Google Scholar]
- A.J.M. Houtsma, N.I. Durlach, L.D. Braida: Intensity perception. XI. Experimental results on the relation of intensity resolution to loudness matching. Journal of the Acoustical Society of America 68 (1998) 807–813. https://doi.org/10.1121/1.384819. [Google Scholar]
- B.C.J. Moore, J.I. Alcántara, T. Dau: Masking patterns for sinusoidal and narrow-band noise maskers. Journal of the Acoustical Society of America 104 (1998) 1023–1038. https://doi.org/10.1121/1.423321. [CrossRef] [PubMed] [Google Scholar]
- S.D. Ewert, T. Dau: External and internal limitations in amplitude-modulation processing. Journal of the Acoustical Society of America 116 (2004) 478–490. https://doi.org/10.1121/1.1737399. [CrossRef] [PubMed] [Google Scholar]
- R.G. Klumpp, H.R. Eady: Some measurements of interaural time difference thresholds. Journal of the Acoustical Society of America 28 (1956) 859–860. https://doi.org/10.1121/1.1908493. [CrossRef] [Google Scholar]
- J. Zwislocki, R.S. Feldman: Just noticeable differences in dichotic phase. Journal of the Acoustical Society of America 28 (1956) 860–864. https://doi.org/10.1121/1.1908495. [CrossRef] [Google Scholar]
- A. Brughera, L. Dunai, W.M. Hartmann: Human interaural time differences thresholds for sine tones: The high-frequency limit. Journal of the Acoustical Society of America 133 (2013) 2839–2855. https://doi.org/10.1121/1.4795778. [CrossRef] [PubMed] [Google Scholar]
- A. Mills: Lateralization of high-frequency tones. Journal of the Acoustical Society of America 32 (1960) 132–134. https://doi.org/10.1121/1.1907864. [CrossRef] [Google Scholar]
- D.W. Grantham: Interaural intensity discrimination: Insensitivity at 1000 Hz. Journal of the Acoustical Society of America 75 (1984) 1191–1194. https://doi.org/10.1121/1.390769. [CrossRef] [PubMed] [Google Scholar]
- M.J. Goupell, O.A. Stakhovskaya: Across-channel interaural-level-difference processing demonstrates frequency dependence. Journal of the Acoustical Society of America 143 (2018) 645–658. https://doi.org/10.1121/1.5021552. [CrossRef] [PubMed] [Google Scholar]
- I. Hirsh, M. Burgeat: Binaural effects in remote masking. Journal of the Acoustical Society of America 30 (1958) 827–832. https://doi.org/10.1121/1.1930084. [CrossRef] [Google Scholar]
- A. Kohlrausch: Auditory filter shape derived from binaural masking experiments. Journal of the Acoustical Society of America 84 (1988) 573–583. https://doi.org/10.1121/1.396835. [CrossRef] [PubMed] [Google Scholar]
- W.A. Yost: Prior stimulation and the masking-level difference. Journal of the Acoustical Society of America 78 (1985) 901–906. https://doi.org/10.1121/1.392920. [CrossRef] [PubMed] [Google Scholar]
- R. Wilson, C. Fowler: Effects of signal duration on the 500-Hz masking-level difference. Scandinavian Audiology 15 (1986) 209–215. https://doi.org/10.3109/01050398609042145. [CrossRef] [PubMed] [Google Scholar]
- R. Wilson, R. Fugleberg: Influence of signal duration on the masking-level difference. Journal of Speech, Language, and Hearing Research 30 (1987) 330–334. https://doi.org/10.1044/jshr.3003.330. [CrossRef] [Google Scholar]
- L.R. Bernstein, C. Trahiotis: The effects of signal duration on N0S0 and N0Sπ thresholds at 500 Hz and 4 kHz. Journal of the Acoustical Society of America 105 (1999) 1776–1783. https://doi.org/10.1121/1.426715. [CrossRef] [PubMed] [Google Scholar]
- B. Kollmeier, R.H. Gilkey: Binaural forward and backward masking: Evidence for sluggishness in binaural detection. Journal of the Acoustical Society of America 87 (1990) 1709–1719. https://doi.org/10.1121/1.399419. [Google Scholar]
- E.R. Hafter, S.C. Carrier: Binaural interaction in low-frequency stimuli: The inability to trade time and intensity completely. Journal of the Acoustical Society of America 51 (1972) 1852–1862. https://doi.org/10.1121/1.1913044. [CrossRef] [PubMed] [Google Scholar]
- N. Kopčo, B.G. Shinn-Cunningham: Spatial unmasking of nearby pure-tone targets in a simulated anechoic environment. Journal of the Acoustical Society of America 87 (2003) 2856–2870. https://doi.org/10.1121/1.1616577. [Google Scholar]
- V.R. Algazi, R.O. Duda, D.M. Thompson, C. Avendano: The CIPIC HRTF database, in: Proceedings of the 2001 IEEE Workshop on Applications of Signal Processing to Audio and Electroacoustics, 4–24 October 2001, New Platz, NY, USA, pp. 99–102. https://doi.org/10.1109/ASPAA.2001.969552. [Google Scholar]
- K.C. Wagner, T. Brand, B. Kollmeier: Entwicklung und Evaluation eines Satztests für die deutsche Sprache III: Evaluation des Oldenburger Satztests [Development and evaluation of a sentence test for German language III: Design, optimization and evaluation of the Oldenburger sentence test]. Zeitschrift für Audiologie 38 (1999) 86–95. [Google Scholar]
- I. Holube, S. Fredelake, M. Vlaming, B. Kollmeier: Development and analysis of an International Speech Test Signal (ISTS). Int. J. Audiol. 49 (2010) 891–903. https://doi.org/10.3109/14992027.2010.506889. [CrossRef] [PubMed] [Google Scholar]
- R. Beutelmann, T. Brand: Prediction of speech intelligibility in spatial noise and reverberation for normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America 120 (2006) 331–342. https://doi.org/10.1121/1.2202888. [CrossRef] [PubMed] [Google Scholar]
- D.S. Brungart: Informational and energetic masking effects in the perception of two simultaneous talkers. Journal of the Acoustical Society of America 109 (2001) 1101–1109. https://doi.org/10.1121/1.1345696. [CrossRef] [PubMed] [Google Scholar]
- I. Siveke, S.D. Ewert, B. Grothe, L. Wiegrebe: Psychophysical and physiological evidence for fast binaural processing. Journal of Neuroscience 28 (2008) 2043–2052. https://doi.org/10.1523/JNEUROSCI.4488-07.2008. [CrossRef] [PubMed] [Google Scholar]
- C.F. Hauth, T. Brand: Modelling sluggishness in binaural unmasking of speech for maskers with time-vaying interaural phase differences. Trends in Hearing 22 (2018) 1–10. https://doi.org/10.1177/2331216517753547. [Google Scholar]
- J. Encke, W. Hemmert: Extraction of inter-aural time differences using a spiking neuron network model of the medial superior olive. Frontiers in Neuroscience 12 (2018) 140. https://doi.org/10.3389/fnins.2018.00140. [CrossRef] [PubMed] [Google Scholar]
- J. Bouse, V. Vencovský, F. Rund: Functional rate-code models of the auditory brainstem for predicting lateralization and discrimination data of human binaural perception. Journal of the Acoustical Society of America 145 (2019) 1–15. https://doi.org/10.1121/1.5084264. [CrossRef] [PubMed] [Google Scholar]
- V. Best, J. Mejia, K. Freeston, R.J. van Hoesel, H. Dillon: An evaluation of the performance of two binaural beamformers in complex and dynamic multitalker environments. International Journal of Audiology 54 (2015) 727–735. https://doi.org/10.3109/14992027.2015.1059502. [CrossRef] [PubMed] [Google Scholar]
- N. Gößling, D. Marquardt, S. Doclo: Performance Analysis of the extended binaural MVDR beamformer with partial noise estimation. IEEE/ACM Transactions on Audio, Speech, and Language Processing 29 (2021) 462–476. https://doi.org/10.1109/TASLP.2020.3043674. [CrossRef] [Google Scholar]
- M.M.E. Hendrikse, G. Grimm, V. Hohmann: Evaluation of the influence of head movement on hearing aid algorithm performance using acoustic simulations. Trends in Hearing 24 (2020) 1–20. https://doi.org/10.1177/2331216520916682. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.